scholarly journals Low Cost, Easy Scalable High Entropy Alloy (HEA) FeCoNiZnGa for High-Efficiency Oxygen Evolution Reaction (OER)

Author(s):  
Lalita Sharma ◽  
Nirmal Kumar ◽  
Rakesh Das ◽  
Khushu Tiwari ◽  
Chandra Sekhar Tiwary ◽  
...  

<p>Oxygen evolution reaction (OER) is the key step involved both in water splitting devices as well as in rechargeable metal-air batteries and there is an urgent requirement for a highly stable and low-cost material for efficient OER. In this article, for the first time, electrocatalyst based on high entropy alloy (HEA) of FeCoNiZnGa has been reported for OER. Nano-crystalline high entropy alloys materials withdrew the attention of the research academia due to their emerging unique properties due to the cocktail effect and synergetic effect between the constituent elements. The existing materials (IrO<sub>2</sub>, RuO<sub>2</sub>, etc.) being utilized in the OER reaction contain precious metals. Thus, high entropy alloy made up of low-cost elements has been formulated and tested for the OER, which is found to be highly stable and more efficient. The formulation of nanocrystalline HEA (FeCoNiZnGa) utilized a unique recipe casting-cum-comminution (CCC). After electrochemical CV activation, transition metal oxides formation at the HEA surface helps in OER activities. HEA exhibits a low overpotential of 370 mV to achieve a current density of 10 mA cm<sup>-2</sup> with a very small Tafel slope of 71 mV dec<sup>-1</sup> and exceptional long term stability of electrolysis for over 10 h in 1 M KOH alkaline solution, which is extremely stable in comparison to the state-of-the-art OER electrocatalyst RuO<sub>2</sub>. Transmission electron microscopic (TEM) studies after 10 h of long term chronoamperometry testing confirmed high stability of HEA as no change in the crystal structure observed. Our work highlights the great potential of HEA towards oxygen evolution reaction which is primary reaction involved in water splitting.</p>

2020 ◽  
Author(s):  
Lalita Sharma ◽  
Nirmal Kumar ◽  
Rakesh Das ◽  
Khushu Tiwari ◽  
Chandra Sekhar Tiwary ◽  
...  

<p>Oxygen evolution reaction (OER) is the key step involved both in water splitting devices as well as in rechargeable metal-air batteries and there is an urgent requirement for a highly stable and low-cost material for efficient OER. In this article, for the first time, electrocatalyst based on high entropy alloy (HEA) of FeCoNiZnGa has been reported for OER. Nano-crystalline high entropy alloys materials withdrew the attention of the research academia due to their emerging unique properties due to the cocktail effect and synergetic effect between the constituent elements. The existing materials (IrO<sub>2</sub>, RuO<sub>2</sub>, etc.) being utilized in the OER reaction contain precious metals. Thus, high entropy alloy made up of low-cost elements has been formulated and tested for the OER, which is found to be highly stable and more efficient. The formulation of nanocrystalline HEA (FeCoNiZnGa) utilized a unique recipe casting-cum-comminution (CCC). After electrochemical CV activation, transition metal oxides formation at the HEA surface helps in OER activities. HEA exhibits a low overpotential of 370 mV to achieve a current density of 10 mA cm<sup>-2</sup> with a very small Tafel slope of 71 mV dec<sup>-1</sup> and exceptional long term stability of electrolysis for over 10 h in 1 M KOH alkaline solution, which is extremely stable in comparison to the state-of-the-art OER electrocatalyst RuO<sub>2</sub>. Transmission electron microscopic (TEM) studies after 10 h of long term chronoamperometry testing confirmed high stability of HEA as no change in the crystal structure observed. Our work highlights the great potential of HEA towards oxygen evolution reaction which is primary reaction involved in water splitting.</p>


Nano Research ◽  
2021 ◽  
Author(s):  
Lalita Sharma ◽  
Nirmal Kumar Katiyar ◽  
Arko Parui ◽  
Rakesh Das ◽  
Ritesh Kumar ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Yan Sang ◽  
Xi Cao ◽  
Gaofei Ding ◽  
Zixuan Guo ◽  
Yingying Xue ◽  
...  

Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen...


2018 ◽  
Vol 54 (12) ◽  
pp. 1533-1536 ◽  
Author(s):  
Yicheng Wei ◽  
Xiang Ren ◽  
Hongmin Ma ◽  
Xu Sun ◽  
Yong Zhang ◽  
...  

Self-standing Co3O4 nanorods array on Co foil as a 1D OER catalyst electrode, only needs overpotential of 308 mV to drive 15 mA cm−2 in 1.0 M KOH, with good long-term electrochemical durability and a high turnover frequency.


Nanoscale ◽  
2021 ◽  
Author(s):  
Haibin Ma ◽  
ChangNing SUN ◽  
Zhili Wang ◽  
Qing Jiang

It is of great importance to develop efficient and low-cost oxygen evolution reaction (OER) electrocatalysts for electrochemical water splitting. Herein, S doped NiCoVOx nanosheets grown on Ni-Foam (S-NiCoVOx/NF) with modified...


Author(s):  
Hanwen Xu ◽  
Jiawei Zhu ◽  
Pengyan Wang ◽  
Ding Chen ◽  
Chengtian Zhang ◽  
...  

Rational design and construction of high-efficiency bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for large-scale hydrogen production by water splitting. Herein, by a...


2020 ◽  
Vol 63 (12) ◽  
pp. 2613-2619
Author(s):  
Peiyan Ma ◽  
Shichao Zhang ◽  
Mutian Zhang ◽  
Junfeng Gu ◽  
Long Zhang ◽  
...  

2020 ◽  
Vol 1 (6) ◽  
pp. 1971-1979
Author(s):  
Salvatore Cosentino ◽  
Mario Urso ◽  
Giacomo Torrisi ◽  
Sergio Battiato ◽  
Francesco Priolo ◽  
...  

NiO nanowalls grown by low-cost chemical bath deposition and thermal annealing are a high-efficiency and sustainable electrocatalytst for OER.


Sign in / Sign up

Export Citation Format

Share Document