scholarly journals Group 13 Lewis Acid Catalyzed Synthesis of Cu2O Nanocrystals via Hydroxide Transmetallation

Author(s):  
Noah Gibson ◽  
Alexandria R. C. Bredar ◽  
Byron Farnum

The colloidal synthesis of metal oxide nanocrystals (NCs) in oleyl alcohol requires the metal to catalyze an esterification reaction with oleic acid to produce oleyl oleate ester and M-OH monomers, which then condense to form MxOy solids. Here we show that the synthesis of Cu2O NCs by this method is limited by the catalytic ability of copper to drive esterification and thus produce Cu+ -OH monomers. However, inclusion of 1-15 mol% of a group 13 cation (Al3+, Ga3+ , or In3+) results in increased yields for the consumption of copper ions toward Cu2O formation and exhibits size/morphology control based on the nature of M3+ . Using a continuous-injection procedure where the copper precursor (Cu2+ -oleate) and catalyst (M3+ -oleate) are injected into oleyl alcohol at a controlled rate, we are able to monitor the reactivity of the precursor and M3+ catalyst using UV-visible and FTIR absorbance spectroscopies. These time-dependent measurements clearly show that M3+ catalysts drive esterification to produce M3+ -OH species, which then undergo transmetallation of hydroxide ligands to generate Cu+ -OH monomers required for Cu2O condensation. Ga3+ is found to be the “goldilocks” catalyst, producing NCs with the smallest size and a distinct cubic morphology not observed for any other group 13 metal. This is believed to be due to rapid transmetallation kinetics between Ga3+ -OH and Cu + -oleate. These studies introduce a new mechanism for the synthesis of metal oxides where inherent catalysis by the parent metal (i.e. copper) can be circumvented with the use of a secondary catalyst to generate -OH ligands.

2021 ◽  
Author(s):  
Noah Gibson ◽  
Alexandria R. C. Bredar ◽  
Byron Farnum

The colloidal synthesis of metal oxide nanocrystals (NCs) in oleyl alcohol requires the metal to catalyze an esterification reaction with oleic acid to produce oleyl oleate ester and M-OH monomers, which then condense to form MxOy solids. Here we show that the synthesis of Cu2O NCs by this method is limited by the catalytic ability of copper to drive esterification and thus produce Cu+ -OH monomers. However, inclusion of 1-15 mol% of a group 13 cation (Al3+, Ga3+ , or In3+) results in increased yields for the consumption of copper ions toward Cu2O formation and exhibits size/morphology control based on the nature of M3+ . Using a continuous-injection procedure where the copper precursor (Cu2+ -oleate) and catalyst (M3+ -oleate) are injected into oleyl alcohol at a controlled rate, we are able to monitor the reactivity of the precursor and M3+ catalyst using UV-visible and FTIR absorbance spectroscopies. These time-dependent measurements clearly show that M3+ catalysts drive esterification to produce M3+ -OH species, which then undergo transmetallation of hydroxide ligands to generate Cu+ -OH monomers required for Cu2O condensation. Ga3+ is found to be the “goldilocks” catalyst, producing NCs with the smallest size and a distinct cubic morphology not observed for any other group 13 metal. This is believed to be due to rapid transmetallation kinetics between Ga3+ -OH and Cu + -oleate. These studies introduce a new mechanism for the synthesis of metal oxides where inherent catalysis by the parent metal (i.e. copper) can be circumvented with the use of a secondary catalyst to generate -OH ligands.


Nanoscale ◽  
2021 ◽  
Author(s):  
Noah Gibson ◽  
Alexandria Bredar ◽  
Nilave Chakraborty ◽  
Byron Farnum

A new transmetallation approach is described for the synthesis of metal oxide nanocrystals (NCs). Typically, the synthesis of metal oxide NCs in oleyl alcohol is driven by metal-based esterification catalysis...


2021 ◽  
Vol 21 (3) ◽  
pp. 659
Author(s):  
Naowara Al-Arafi ◽  
Nadia Salih ◽  
Jumat Salimon

In this work, the synthesis of oleyl oleate wax ester using Brønsted acidic ionic liquid catalysts was carried out. Confirmation of oleyl oleate molecular structure has been performed using FTIR, NMR, and ESI-MS spectroscopies. The ability of ionic liquid catalysts for catalyzing the esterification reaction of oleic acid and oleyl alcohol to produce oleyl oleate was optimized. The ionic liquid catalyst ([NMP][CH3SO3]) was found to be the best catalyst for the esterification reaction of oleic acid and oleyl alcohol compared with the other acidic ionic liquids studied. The optimal reaction conditions were determined at a reaction time of 8 h; oleic acid to oleyl alcohol mole ratio of 1:1; ([NMP][CH3SO3]) with 9.9 wt.%; and reaction temperature of 90 °C. Under these conditions, the percentage yield of oleyl oleate wax ester was 86%.


2012 ◽  
Vol 9 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Naowara Al-Arafi ◽  
Jumat Salimon

Four homogeneous acidic catalysts were tested for their ability to catalyze the esterification reaction of oleic acid and oleyl alcohol to produce oleyl oleate, a wax ester. Sulfuric acid showed relatively higher specific activity. Various reaction parameters were optimised to obtain high percentage yield of oleyl oleate. The optimum condition to produce oeyl oleate was reaction time; 5 h, temperture; 90°C, amount of sulforic acid 0.15 g and molar ratio of oleyl alcohol to oleic acid; 1:1. Percentage yield of wax ester obtained at these optimum reaction conditions was 93.88. Disappearance of carboxylic acid (C=O) peak has confirmed by FTIR with appearance of ester (C=O) peak at 1739 cm−1.1H NMR spectra analyses confirmed the result of oleyl oleate with appearance of ester (-CH2OCOR) at 4.02 ppm and also the13C-NMR confirmed the result with appearance of ester (C=O) peak at 173.2 ppm. The low-temperture behavior of compound synthesized was determined through its pour point (PP), viscosity index (VI) and flash point (FP) values. The results showed that oleyl oleate exhibited the most favorable low-temperture performance of PP, VI and FP with −31°C, 197.5 and 320°C respectively. This is due to increase of the molacular weight thus improve the low temperture property significantly.


2017 ◽  
Vol 29 (1) ◽  
pp. 24-28
Author(s):  
M Rakib Uddin ◽  
Kaniz Ferdous ◽  
Sukanta Kumar Mondal ◽  
Maksudur R Khan ◽  
MA Islam

Biodiesel is a biodegradable, sustainable and clean energy has worldwide attracted renewed and growing interest in topical years, chiefly due to development in biodiesel fuel and ecological pressures which include climatic changes. In this paper, karanja (pongamia pinnata) seed has been studied as a potential source for biodiesel preparation. Karanja oil is extracted from the seed by different methods. Oil properties have been measured by standard methods. Acid catalyzed transesterification, acid catalyzed two-step method and three-step method have been studied for biodiesel preparation from karanja oil. In the three-step method, the first step is saponification followed by acidification to produce free fatty acid (FFA) and finally esterification of FFA to produce biodiesel. In saponification, acidification and esterification reaction, the reaction parameters were optimized. Silica gel was used in both transesterification and esterification to adsorb water, produced in the reaction hence increase the reaction rate. Properties of biodiesel such as specific gravity, FFA, Viscosity, saponification value, iodine value, cloud point, pour point, flash point, cetane index, calorific value etc are measured and compared to conventional diesel fuel and standard biodiesel.Journal of Chemical Engineering, Vol. 29, No. 1, 2017: 24-28


2007 ◽  
Vol 1035 ◽  
Author(s):  
Krishnaprasad Sankar ◽  
Brian A. Akins ◽  
Tosifa A. Memon ◽  
Nathan J. Withers ◽  
Shin T. Bowers ◽  
...  

AbstractZnO colloidal nanocrystals have been synthesized using two different approaches and characterized by HRTEM, EDS, and photoluminescence spectroscopy. ZnO nanocrystals synthesized from zinc alkoxy alkyl precursors in the MeIm/H2O coordinating solvent showed only visible surface-defect related emission in their PL spectra. No band-to-band UV emission was observed after ZnS coating of those ZnO nanocrystals. In contrast, a strong band-to-band UV emission dominated PL spectra of ZnO nanocrystals synthesized through wet-chemical acid-catalyzed esterification of zinc acetate.


Biofuels ◽  
2020 ◽  
pp. 1-11 ◽  
Author(s):  
Tailor Machado Peruzzolo ◽  
João Felipe Stival ◽  
Loana Mara Baika ◽  
Luiz Pereira Ramos ◽  
Marco Tadeu Grassi ◽  
...  

2013 ◽  
Vol 111 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Xiufeng Lu ◽  
Hengbo Yin ◽  
Lingqin Shen ◽  
Yonghai Feng ◽  
Aili Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document