injection procedure
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Noah Gibson ◽  
Alexandria R. C. Bredar ◽  
Byron Farnum

The colloidal synthesis of metal oxide nanocrystals (NCs) in oleyl alcohol requires the metal to catalyze an esterification reaction with oleic acid to produce oleyl oleate ester and M-OH monomers, which then condense to form MxOy solids. Here we show that the synthesis of Cu2O NCs by this method is limited by the catalytic ability of copper to drive esterification and thus produce Cu+ -OH monomers. However, inclusion of 1-15 mol% of a group 13 cation (Al3+, Ga3+ , or In3+) results in increased yields for the consumption of copper ions toward Cu2O formation and exhibits size/morphology control based on the nature of M3+ . Using a continuous-injection procedure where the copper precursor (Cu2+ -oleate) and catalyst (M3+ -oleate) are injected into oleyl alcohol at a controlled rate, we are able to monitor the reactivity of the precursor and M3+ catalyst using UV-visible and FTIR absorbance spectroscopies. These time-dependent measurements clearly show that M3+ catalysts drive esterification to produce M3+ -OH species, which then undergo transmetallation of hydroxide ligands to generate Cu+ -OH monomers required for Cu2O condensation. Ga3+ is found to be the “goldilocks” catalyst, producing NCs with the smallest size and a distinct cubic morphology not observed for any other group 13 metal. This is believed to be due to rapid transmetallation kinetics between Ga3+ -OH and Cu + -oleate. These studies introduce a new mechanism for the synthesis of metal oxides where inherent catalysis by the parent metal (i.e. copper) can be circumvented with the use of a secondary catalyst to generate -OH ligands.


2021 ◽  
Author(s):  
Noah Gibson ◽  
Alexandria R. C. Bredar ◽  
Byron Farnum

The colloidal synthesis of metal oxide nanocrystals (NCs) in oleyl alcohol requires the metal to catalyze an esterification reaction with oleic acid to produce oleyl oleate ester and M-OH monomers, which then condense to form MxOy solids. Here we show that the synthesis of Cu2O NCs by this method is limited by the catalytic ability of copper to drive esterification and thus produce Cu+ -OH monomers. However, inclusion of 1-15 mol% of a group 13 cation (Al3+, Ga3+ , or In3+) results in increased yields for the consumption of copper ions toward Cu2O formation and exhibits size/morphology control based on the nature of M3+ . Using a continuous-injection procedure where the copper precursor (Cu2+ -oleate) and catalyst (M3+ -oleate) are injected into oleyl alcohol at a controlled rate, we are able to monitor the reactivity of the precursor and M3+ catalyst using UV-visible and FTIR absorbance spectroscopies. These time-dependent measurements clearly show that M3+ catalysts drive esterification to produce M3+ -OH species, which then undergo transmetallation of hydroxide ligands to generate Cu+ -OH monomers required for Cu2O condensation. Ga3+ is found to be the “goldilocks” catalyst, producing NCs with the smallest size and a distinct cubic morphology not observed for any other group 13 metal. This is believed to be due to rapid transmetallation kinetics between Ga3+ -OH and Cu + -oleate. These studies introduce a new mechanism for the synthesis of metal oxides where inherent catalysis by the parent metal (i.e. copper) can be circumvented with the use of a secondary catalyst to generate -OH ligands.


Author(s):  
Clément Bonnerot ◽  
Wenbin Lu ◽  
Philip F Hopkins

Abstract When a star comes too close to a supermassive black hole, it gets torn apart by strong tidal forces in a tidal disruption event, or TDE. Half of the elongated stream of debris comes back to the stellar pericenter where relativistic apsidal precession induces a self-crossing shock. As a result, the gas gets launched into an outflow that can experience additional interactions, leading to the formation of an accretion disc. We carry out the first radiation-hydrodynamics simulations of this process, making use of the same injection procedure to treat the self-crossing shock as in our previous adiabatic study. Two sets of realistic parameters of the problem are considered that correspond to different strengths of this initial interaction. In both cases, we find that the injected matter has its trajectories promptly circularized by secondary shocks taking place near the black hole. However, the generated internal energy efficiently diffuses away in the form of radiation, which results in a thin vertical profile of the formed disc. The diffusing photons promptly irradiate the surrounding debris until they emerge with a bolometric luminosity of $L\approx 10^{44} \, \rm erg\, s^{-1}$. Towards the self-crossing shock, diffusion is however slowed that results in a shallower luminosity increase, with a potentially significant component in the optical band. Matter launched to large distances continuously gains energy through radiation pressure, which can cause a significant fraction to become unbound. This work provides direct insight into the origin of the early emission from TDEs, which is accessed by a rapidly increasing number of observations.


2021 ◽  
Vol 249 ◽  
pp. 15004
Author(s):  
Danilo S. Borges ◽  
Hans J. Herrmann ◽  
Humberto A. Carmona ◽  
José Soares Andrade ◽  
Ascânio D. Araújo

Magnetic beads attract each other forming rather stable chains. We consider such chains formed by magnetic beads and push them into a Hele-Shaw cell either from the boundary or from the center. When such a chain is pushed into a cavity, it bends and folds spontaneously forming interesting unreported patterns. These patterns are self-similar and an effective fractal dimension can be defined. As found experimentally and with numerical simulations, the numbers of beads, loops and contacts follow power laws as a function of packing fraction and, depending on the injection procedure, even energetically less favorable triangular configurations can be stabilized.


2020 ◽  
Vol 9 (11) ◽  
pp. 27 ◽  
Author(s):  
Chen-rei Wan ◽  
Barry Kapik ◽  
Charles C. Wykoff ◽  
Christopher R. Henry ◽  
Mark R. Barakat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document