scholarly journals Electronics Communication and Photoinduced Intramolecular Electron Transfer in Hybrid Ru(II)-Re(I) Complexes Using Eigenstate-Based and Diabatic-State-Based Models

Author(s):  
Rangsiman Ketkaew

Photoinduced intramolecular electron transfer (PIET) plays a vital role in the efficiency of electronics communication in transition metal complexes catalysing oxidation-reduction reaction. In this work, we theoretically calculate the rate of electron transfer(ET) in Ru(II)-BL-Ru(I) hybrid complexes; where BL is bridging ligand. A brief concept of ET in the basis of Marcus theory, which is extended to address a variety of different type of ET, is provided. We show that, in the case of Ru(II)-BL-Ru(I) complex, ET involves a non-adiabatic state which thanks to a fast electronics communication between donor and acceptor connected by BL and becomes rigid complex. Single electron transferring in Ru(II)-BL-Ru(I) complex governed by PIET constructed by potential energy curve as change of structural transformation over time-evolution. We also investigate the mechanism of PIET involving a redox reaction in excited state, wherein the oxidation state of Ru(II) (donor) and Ru(I) (acceptor) changes. To access non-adiabatic state of Ru(II)-BL-Ru(I), we use constrained density functional theory to allow ground state calculation to be performed along with geometry constraints. We also systematically study the role of distance of donor-acceptor separation on kinetics of PIET

2021 ◽  
Author(s):  
Rangsiman Ketkaew

Photoinduced intramolecular electron transfer (PIET) plays a vital role in the efficiency of electronics communication in transition metal complexes catalysing oxidation-reduction reaction. In this work, we theoretically calculate the rate of electron transfer(ET) in Ru(II)-BL-Ru(I) hybrid complexes; where BL is bridging ligand. A brief concept of ET in the basis of Marcus theory, which is extended to address a variety of different type of ET, is provided. We show that, in the case of Ru(II)-BL-Ru(I) complex, ET involves a non-adiabatic state which thanks to a fast electronics communication between donor and acceptor connected by BL and becomes rigid complex. Single electron transferring in Ru(II)-BL-Ru(I) complex governed by PIET constructed by potential energy curve as change of structural transformation over time-evolution. We also investigate the mechanism of PIET involving a redox reaction in excited state, wherein the oxidation state of Ru(II) (donor) and Ru(I) (acceptor) changes. To access non-adiabatic state of Ru(II)-BL-Ru(I), we use constrained density functional theory to allow ground state calculation to be performed along with geometry constraints. We also systematically study the role of distance of donor-acceptor separation on kinetics of PIET


2021 ◽  
Author(s):  
Rangsiman Ketkaew

Photoinduced intramolecular electron transfer (PIET) plays a vital role in the efficiency of electronics communication in transition metal complexes catalysing oxidation-reduction reaction. In this work, we theoretically calculate the rate of electron transfer(ET) in Ru(II)-BL-Ru(I) hybrid complexes; where BL is bridging ligand. A brief concept of ET in the basis of Marcus theory, which is extended to address a variety of different type of ET, is provided. We show that, in the case of Ru(II)-BL-Ru(I) complex, ET involves a non-adiabatic state which thanks to a fast electronics communication between donor and acceptor connected by BL and becomes rigid complex. Single electron transferring in Ru(II)-BL-Ru(I) complex governed by PIET constructed by potential energy curve as change of structural transformation over time-evolution. We also investigate the mechanism of PIET involving a redox reaction in excited state, wherein the oxidation state of Ru(II) (donor) and Ru(I) (acceptor) changes. To access non-adiabatic state of Ru(II)-BL-Ru(I), we use constrained density functional theory to allow ground state calculation to be performed along with geometry constraints. We also systematically study the role of distance of donor-acceptor separation on kinetics of PIET


2013 ◽  
Vol 27 (21) ◽  
pp. 1350090 ◽  
Author(s):  
XIAO-FENG PANG

The mechanism and properties of electron transfer along protein molecules at finite temperature T ≠ 0 in the life systems are studied using nonlinear theory of bio-energy transport and Green function method, in which the electrons are transferred from donors to acceptors in virtue of the supersound soliton excited by the energy released in ATP hydrolysis. The electron transfer is, in essence, a process of oxidation–reduction reaction. In this study we first give the Hamiltonian and wavefunction of the system and find out the soliton solution of the dynamical equation in the protein molecules with finite temperature, and obtain the dynamical coefficient of the electron transfer. The results show that the speed of the electron transfer is related to the velocity of motion of the soliton, distribution of electrons in the donor and acceptor as well as the interaction strength among them. We finally concluded the changed rule of electric current, arising from the electron transfer, with increasing time. These results are useful in molecular and chemical biology.


1989 ◽  
Vol 164 (2-3) ◽  
pp. 120-125 ◽  
Author(s):  
James M. Lawson ◽  
Donald C. Craig ◽  
Michael N. Paddon-Row ◽  
Jan Kroon ◽  
Jan W. Verhoeven

2018 ◽  
Vol 42 (11) ◽  
pp. 9281-9290 ◽  
Author(s):  
N. Manfredi ◽  
V. Trifiletti ◽  
F. Melchiorre ◽  
G. Giannotta ◽  
P. Biagini ◽  
...  

Suppression of back reaction and enhanced photoinduced intramolecular electron transfer through peripheral functionalization of triphenylamino based dibranched donor–acceptor dyes.


Sign in / Sign up

Export Citation Format

Share Document