tunneling probability
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 21)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Ruiyi Liu ◽  
Xiaohu Wu ◽  
Zheng Cui

Abstract The photon tunneling probability is the most important thing in near-field radiative heat transfer (NFRHT). This work study the photon tunneling via coupling graphene plasmons with phonon polaritons in hexagonal boron nitride (hBN). We consider two cases of the optical axis of hBN along z-axis and x-axis, respectively. We investigate the NFRHT between graphene-covered bulk hBN, and compare it with that of bare bulk hBN. Our results show that in Reststrahlen bands, the coupling of graphene plasmons and phonon polaritons in hBN can either suppress or enhance the photon tunneling probability, depending on the chemical potential of graphene and frequency. This conclusion holds when the optiacal axis of hBN is either along z-axis or x-axis. The findings in this work not only deepen our understanding of coupling mechanism between graphene plasmons with phonon polaritons, but also provide a theoretical basis for controlling photon tunneling in graphene covered hyperbolic materials.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 601
Author(s):  
Cristina Medina-Bailon ◽  
José Luis Padilla ◽  
Carlos Sampedro ◽  
Luca Donetti ◽  
Vihar P. Gergiev ◽  
...  

The implementation of a source to drain tunneling in ultrascaled devices using MS-EMC has traditionally led to overestimated current levels in the subthreshold regime. In order to correct this issue and enhance the capabilities of this type of simulator, we discuss in this paper two alternative and self-consistent solutions focusing on different parts of the simulation flow. The first solution reformulates the tunneling probability computation by modulating the WKB approximation in a suitable way. The second corresponds to a change in the current calculation technique based on the utilization of the Landauer formalism. The results from both solutions are compared and contrasted to NEGF results from NESS. We conclude that the current computation modification constitutes the most suitable and advisable strategy to improve the MS-EMC tool.


2021 ◽  
pp. 1-9
Author(s):  
M. Hosseini-Tabatabaei ◽  
S.A. Alavi ◽  
V. Dehghani

Using the semiclassical WKB method and considering the WKB quantization condition, the alpha decay half-lives of 420 alpha emitters were calculated with eight forms of the proximity and Woods–Saxon type potentials. The effect of quantization condition on the nuclear potential, effective potential, assault frequency, tunneling probability, alpha decay half-life, and root mean square deviation between theory and the experiment were investigated. Significant differences between calculated half-lives with and without inclusion of the quantization condition were observed specially for proximity potentials. By including the quantization, the Woods–Saxon potential was found as the best potential for even–even, even–odd, odd–even, odd–odd, and all alpha emitters. The quantization condition normalized the nuclear potentials. Therefore, by considering this condition, the thirteen forms of the prox77 potential with different sets of the surface energy and surface asymmetry constants gave the same results. This result was justified with two sets of parameters.


2021 ◽  
Vol 91 (10) ◽  
pp. 1431
Author(s):  
M.Б. Семенов ◽  
В.Д. Кревчик ◽  
Д.O. Филатов ◽  
A.В. Шорохов ◽  
A.П. Шкуринов ◽  
...  

We report on the results of experimental studies of the photoelectric properties of a GaAs p-i-n photodiode with InAs/GaAs(001) double asymmetric quantum dots (DAQDs) grown by self-assembling in Metal Organic Vapor Phase Epitaxy (MOVPE) process. Three peaks were observed in the dependence of the photocurrent on the reverse bias measured at monochromatic photoexcitation of the DAQDs at the wavelength corresponding to the energy of interband optical transitions between the ground hole and electron states in the bigger QDs. These peaks were related to the tunneling of the photoexcited electrons between the QDs including the dissipative one (with emission and absorption of the optical phonons). The experimental results agree qualitatively with the theoretical field dependence of the 1D dissipative tunneling probability between the QDs.


2020 ◽  
Vol 124 (42) ◽  
pp. 8733-8743
Author(s):  
G. A. Pitsevich ◽  
A. E. Malevich ◽  
D. G. Kisuryna ◽  
A. A. Ostyakov ◽  
U. U. Sapeshka

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

We carry out the Hawking temperature of a 2+1-dimensional circularly symmetric traversable wormhole in the framework of the generalized uncertainty principle (GUP). Firstly, we introduce the modified Klein-Gordon equation of the spin-0 particle, the modified Dirac equation of the spin-1/2 particle, and the modified vector boson equation of the spin-1 particle in the wormhole background, respectively. Given these equations under the Hamilton-Jacobi approach, we analyze the GUP effect on the tunneling probability of these particles near the trapping horizon and, subsequently, on the Hawking temperature of the wormhole. Furthermore, we have found that the modified Hawking temperature of the wormhole is determined by both wormhole’s and tunneling particle’s properties and indicated that the wormhole has a positive temperature similar to that of a physical system. This case indicates that the wormhole may be supported by ordinary (nonexotic) matter. In addition, we calculate the Unruh-Verlinde temperature of the wormhole by using Kodama vectors instead of time-like Killing vectors and observe that it equals to the standard Hawking temperature of the wormhole.


2020 ◽  
Vol 10 (4) ◽  
pp. 241
Author(s):  
Mustafa Alrabayah ◽  
Abdallah Barjas Qaswal ◽  
Aiman Suleiman ◽  
Lubna Khreesha

(1) Background: multiple theories were proposed to explain the phenomenon of phantom limb pain (PLP). Nevertheless, the phenomenon is still shrouded in mystery. The aim of this study is to explore the phenomenon from a new perspective, where quantum tunneling of ions, a promising field in medical practice, might play a major role. (2) Methods: investigators designed a quantum mathematical model based on the Schrödinger equation to examine the probability of potassium ions quantum tunneling through closed membrane potassium channels to the inside of phantom axons, leading to the generation of action potential. (3) Results: the model suggests that the probability of action potential induction at a certain region of the membrane of phantom neurons, when a neuron of the stump area is stimulated over 1 mm2 surface area of the membrane available for tunneling is 1.04 × 10−2. Furthermore, upon considering two probabilities of potassium channelopathies, one that decreased the energy of the barrier by 25% and another one by 50%, the tunneling probability became 1.22 × 10−8 and 3.86 × 10−4, respectively. (4) Conclusion: quantum models of potassium ions can provide a reliable theoretical hypothesis to unveil part of the ambiguity behind PLP.


Sign in / Sign up

Export Citation Format

Share Document