Maxwell’s Equations versus Newton’s Third Law

2018 ◽  
Author(s):  
Glyn Kennell ◽  
Richard Evitts

The presented simulated data compares concentration gradients and electric fields with experimental and numerical data of others. This data is simulated for cases involving liquid junctions and electrolytic transport. The objective of presenting this data is to support a model and theory. This theory demonstrates the incompatibility between conventional electrostatics inherent in Maxwell's equations with conventional transport equations. <br>

2018 ◽  
Author(s):  
Glyn Kennell ◽  
Richard Evitts

The presented simulated data compares concentration gradients and electric fields with experimental and numerical data of others. This data is simulated for cases involving liquid junctions and electrolytic transport. The objective of presenting this data is to support a model and theory. This theory demonstrates the incompatibility between conventional electrostatics inherent in Maxwell's equations with conventional transport equations. <br>


2012 ◽  
Vol 11 (5) ◽  
pp. 1673-1696 ◽  
Author(s):  
Liping Gao ◽  
Dong Liang

AbstractThe symmetric energy-conserved splitting FDTD scheme developed in is a very new and efficient scheme for computing the Maxwell’s equations. It is based on splitting the whole Maxwell’s equations and matching the x-direction and y-direction electric fields associated to the magnetic field symmetrically. In this paper, we make further study on the scheme for the 2D Maxwell’s equations with the PEC boundary condition. Two new energy-conserved identities of the symmetric EC-S-FDTD scheme in the discrete H1-norm are derived. It is then proved that the scheme is uncondi-tionally stable in the discrete H1-norm. By the new energy-conserved identities, the super-convergence of the symmetric EC-S-FDTD scheme is further proved that it is of second order convergence in both time and space steps in the discrete H1-norm. Numerical experiments are carried out and confirm our theoretical results.


Author(s):  
Richard Freeman ◽  
James King ◽  
Gregory Lafyatis

A review of the basic elements of electricity and magnetism is presented with an introduction to Maxwell’s equations for steady-state in a vacuum. The modifications to these equations necessary to account for time varying sources are shown to produce to a causal unification of magnetic and electric fields. The application of Maxwell’s equations in the presence of matter leads to the concepts of electric and magnetic polarization of matter. Electromagnetic radiation arises directly from Maxwell’s time-dependent equations and the basic response of materials to this radiation is discussed. Finally, electromagnetic conservation laws are derived, including electromagnetic energy and linear and angular momentum.


1974 ◽  
Vol 52 (1) ◽  
pp. 95-95
Author(s):  
J. C. Byrne

When the displacement current is negligible in Maxwell's equations an additional assumption of charge neutrality is not a redundant assumption, as was recently claimed by Monroe, for a plasma in a magnetic field when there are no externally maintained electric fields.


PIERS Online ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 355-360 ◽  
Author(s):  
Fethi Bin Muhammad Belgacem

Sign in / Sign up

Export Citation Format

Share Document