Polyelectrolyte Complexation of Oligonucleotides by Charged Hydrophobic – Neutral Hydrophilic Block Polymers

Author(s):  
Alexander E. Marras ◽  
Jeffrey Vieregg ◽  
Jeffrey Ting ◽  
Jack D. Rubien ◽  
Matthew Tirrell

Polyelectrolyte complex micelles (PCMs, core-shell nanoparticles formed by complexation of a polyelectrolyte with a polyelectrolyte-hydrophilic neutral block polymer) offer an attractive solution to the critical problem of delivering therapeutic nucleic acids, but few structure-property studies have been carried out to date. We present data comparing oligonucleotide PCMs formed with poly(vinylbenzyl trimethylammonium) as the cationic block to those using poly(lysine), which is more commonly used. Despite its higher charge density, increased hydrophobicity, and permanent charge, pVBTMA appears to complex DNA more weakly than does poly(lysine). Using small angle X-ray scattering and electron microscopy, we find that, at physiological ionic strength, PCMs formed from both cationic blocks exhibit very similar structure-property relationships, with PCM radius determined by the cationic block size and shape controlled by the hybridization state of the oligonucleotides. These observations narrow the design space for optimizing therapeutic PCMs and provide new insights into the rich polymer physics of polyelectrolyte self-assembly. <br>

2018 ◽  
Author(s):  
Alexander E. Marras ◽  
Jeffrey Vieregg ◽  
Jeffrey Ting ◽  
Jack D. Rubien ◽  
Matthew Tirrell

Polyelectrolyte complex micelles (PCMs, core-shell nanoparticles formed by complexation of a polyelectrolyte with a polyelectrolyte-hydrophilic neutral block polymer) offer an attractive solution to the critical problem of delivering therapeutic nucleic acids, but few structure-property studies have been carried out to date. We present data comparing oligonucleotide PCMs formed with poly(vinylbenzyl trimethylammonium) as the cationic block to those using poly(lysine), which is more commonly used. Despite its higher charge density, increased hydrophobicity, and permanent charge, pVBTMA appears to complex DNA more weakly than does poly(lysine). Using small angle X-ray scattering and electron microscopy, we find that, at physiological ionic strength, PCMs formed from both cationic blocks exhibit very similar structure-property relationships, with PCM radius determined by the cationic block size and shape controlled by the hybridization state of the oligonucleotides. These observations narrow the design space for optimizing therapeutic PCMs and provide new insights into the rich polymer physics of polyelectrolyte self-assembly. <br>


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 83 ◽  
Author(s):  
Alexander E. Marras ◽  
Jeffrey R. Vieregg ◽  
Jeffrey M. Ting ◽  
Jack D. Rubien ◽  
Matthew V. Tirrell

Polyelectrolyte complex micelles (PCMs, core-shell nanoparticles formed by complexation of a polyelectrolyte with a polyelectrolyte-hydrophilic neutral block copolymer) offer a solution to the critical problem of delivering therapeutic nucleic acids, Despite this, few systematic studies have been conducted on how parameters such as polycation charge density, hydrophobicity, and choice of charged group influence PCM properties, despite evidence that these strongly influence the complexation behavior of polyelectrolyte homopolymers. In this article, we report a comparison of oligonucleotide PCMs and polyelectrolyte complexes formed by poly(lysine) and poly((vinylbenzyl) trimethylammonium) (PVBTMA), a styrenic polycation with comparatively higher charge density, increased hydrophobicity, and a permanent positive charge. All of these differences have been individually suggested to provide increased complex stability, but we find that PVBTMA in fact complexes oligonucleotides more weakly than does poly(lysine), as measured by stability versus added salt. Using small angle X-ray scattering and electron microscopy, we find that PCMs formed from both cationic blocks exhibit very similar structure-property relationships, with PCM radius determined by the cationic block size and shape controlled by the hybridization state of the oligonucleotides. These observations narrow the design space for optimizing therapeutic PCMs and provide new insights into the rich polymer physics of polyelectrolyte self-assembly.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 730
Author(s):  
Erik Sarnello ◽  
Tao Li

Enzyme immobilization techniques are widely researched due to their wide range of applications. Polymer–protein core–shell nanoparticles (CSNPs) have emerged as a promising technique for enzyme/protein immobilization via a self-assembly process. Based on the desired application, different sizes and distribution of the polymer–protein CSNPs may be required. This work systematically studies the assembly process of poly(4-vinyl pyridine) and bovine serum albumin CSNPs. Average particle size was controlled by varying the concentrations of each reagent. Particle size and size distributions were monitored by dynamic light scattering, ultra-small-angle X-ray scattering, small-angle X-ray scattering and transmission electron microscopy. Results showed a wide range of CSNPs could be assembled ranging from an average radius as small as 52.3 nm, to particles above 1 µm by adjusting reagent concentrations. In situ X-ray scattering techniques monitored particle assembly as a function of time showing the initial particle growth followed by a decrease in particle size as they reach equilibrium. The results outline a general strategy that can be applied to other CSNP systems to better control particle size and distribution for various applications.


Nanoscale ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 4519-4529
Author(s):  
J. Mohapatra ◽  
J. Elkins ◽  
M. Xing ◽  
D. Guragain ◽  
Sanjay R. Mishra ◽  
...  

Self-assembly of nanoparticles into ordered patterns is a novel approach to build up new consolidated materials with desired collective physical properties.


2003 ◽  
Vol 36 (4) ◽  
pp. 1069-1074 ◽  
Author(s):  
D. Eberbeck ◽  
A. Lange ◽  
M. Hentschel

Different very dilute suspensions of magnetic nanoparticles (magnetite surrounded by an organic shell) in water (ferrofluids) were investigated using small-angle X-ray scattering. It is shown that the scattering originates not only from noncorrelated core–shell nanoparticles, but also from larger structures. By modelling, these structures can be identified as close-packed clusters consisting of core–shell particles (core diameter ∼10 nm). The analysis of the radial distance distribution function, obtained by Fourier transformation of the scattered intensity, reveals a lower bound of the mean cluster size of about 40 nm. The formation of clusters is persistent, even in very dilute suspensions.


2018 ◽  
Vol 24 (67) ◽  
pp. 17672-17676 ◽  
Author(s):  
Benjamin Pacaud ◽  
Loïc Leclercq ◽  
Jean-François Dechézelles ◽  
Véronique Nardello-Rataj

Sign in / Sign up

Export Citation Format

Share Document