Assessing the Calculation of Exchange Coupling Constants and Spin Crossover Gaps Using the Approximate Projection Model to Improve Density Function Calculations

Author(s):  
Xianghai Sheng ◽  
Lee Thompson ◽  
Hrant Hratchian

This work evaluates the quality of exchange coupling constant and spin crossover gap calculations using density functional theory corrected by the Approximate Projection model. Results show that improvements using the Approximate Projection model range from modest to significant. This study demonstrates that, at least for the class of systems examined here, spin-projection generally improves the quality of density functional theory calculations of J-coupling constants and spin crossover gaps. Furthermore, it is shown that spin-projection can be important for both geometry optimization and energy evaluations. The Approximate Project model provides an affordable and practical approach for effectively correcting spin-contamination errors in molecular exchange coupling constant and spin crossover gap calculations.

2019 ◽  
Author(s):  
Lee Thompson ◽  
Hrant Hratchian ◽  
Xianghai Sheng

This work evaluates the quality of exchange coupling constant and spin crossover gap calculations using density functional theory corrected by the Approximate Projection model. Results show that improvements using the Approximate Projection model range from modest to significant. This study demonstrates that, at least for the class of systems examined here, spin-projection generally improves the quality of density functional theory calculations of J-coupling constants and spin crossover gaps. Furthermore, it is shown that spin-projection can be important for both geometry optimization and energy evaluations. The Approximate Project model provides an affordable and practical approach for effectively correcting spin-contamination errors in molecular exchange coupling constant and spin crossover gap calculations.


2019 ◽  
Author(s):  
Xianghai Sheng ◽  
Lee Thompson ◽  
Hrant Hratchian

This work evaluates the quality of exchange coupling constant and spin crossover gap calculations using density functional theory corrected by the Approximate Projection model. Results show that improvements using the Approximate Projection model range from modest to significant. This study demonstrates that, at least for the class of systems examined here, spin-projection generally improves the quality of density functional theory calculations of $J$-coupling constants and spin crossover gaps. Furthermore, it is shown that spin-projection can be important for both geometry optimization and energy evaluations. The Approximate Projection model provides an affordable and practical approach for effectively correcting spin-contamination errors in such calculations.


2019 ◽  
Author(s):  
Xianghai Sheng ◽  
Lee Thompson ◽  
Hrant Hratchian

This work evaluates the quality of exchange coupling constant and spin crossover gap calculations using density functional theory corrected by the Approximate Projection model. Results show that improvements using the Approximate Projection model range from modest to significant. This study demonstrates that, at least for the class of systems examined here, spin-projection generally improves the quality of density functional theory calculations of $J$-coupling constants and spin crossover gaps. Furthermore, it is shown that spin-projection can be important for both geometry optimization and energy evaluations. The Approximate Projection model provides an affordable and practical approach for effectively correcting spin-contamination errors in such calculations.


2019 ◽  
Author(s):  
Xianghai Sheng ◽  
Lee Thompson ◽  
Hrant Hratchian

This work evaluates the quality of exchange coupling constant and spin crossover gap calculations using density functional theory corrected by the Approximate Projection model. Results show that improvements using the Approximate Projection model range from modest to significant. This study demonstrates that, at least for the class of systems examined here, spin-projection generally improves the quality of density functional theory calculations of $J$-coupling constants and spin crossover gaps. Furthermore, it is shown that spin-projection can be important for both geometry optimization and energy evaluations. The Approximate Projection model provides an affordable and practical approach for effectively correcting spin-contamination errors in such calculations.


2013 ◽  
Vol 91 (9) ◽  
pp. 866-871 ◽  
Author(s):  
Silvia Gómez-Coca ◽  
Eliseo Ruiz

The exchange coupling constants of a Mn14 complex constituted by two weakly coupled Mn7 moieties were calculated using two different density functional theory (DFT) approaches: the Perdew–Burke–Ernzerhof (PBE) functional with a numerical basis set and the hybrid Becke, three-parameter Lee–Yang–Parr (B3LYP) functional employed with a Gaussian basis set. The sign and relative strength of the exchange coupling constants calculated with both methods were consistent; as expected, the values calculated with the PBE functional were slightly overestimated, as corroborated by comparison with the experimental magnetic susceptibility curve. Both methods gave a ground spin configuration of S = 3/2 for the Mn7 moiety, which was weakly antiferromagnetically coupled with the other Mn7 fragment, leading to an S = 0 ground spin configuration for the entire Mn14 complex.


2009 ◽  
Vol 87 (6) ◽  
pp. 647-652 ◽  
Author(s):  
Asadollah Boshra ◽  
Ahmad Seif

Based upon density functional theory, we investigate the influence of oxygen dopant atoms that make a boroxol ring on the electrostatic properties of a zigzag (10, 0) boron nitride nanotube in which three of the nitrogen atoms are replaced by oxygen dopant atoms. The electric field gradient (EFG) tensors at the sites of 11B and 14N nuclei were calculated and converted to quadrupole coupling constants (CQ) in the two models of a perfect and a boroxol ring O-doped (10, 0) single-walled boron nitride nanotube (BNNT). Our calculations showed that the CQ values of the boron and nitrogen nuclei along the length of a perfect BNNT are divided into layers. Among the layers the mouth layers have the largest CQ magnitudes. In the doped model, in addition to the mouth layers, the CQ values of those nitrogen nuclei which directly bond to the boroxol ring are increased. However, the CQ values of the boron nuclei that make the boroxol ring and directly bond to the boroxol ring are decreased.


Sign in / Sign up

Export Citation Format

Share Document