Nickel-Catalyzed Inter- and Intramolecular Carbon-Sulfur Bond Metathesis by Reversible Arylation

Author(s):  
Tristan Delcaillau ◽  
Alessandro Bismuto ◽  
Zhong Lian ◽  
Bill Morandi

A nickel-catalyzed carbon-sulfur bond metathesis has been developed to access high-value thioethers. 1,2-bis(dicyclohexylphosphino)ethane (dcype) is essential to promote this highly functional group tolerant reaction. Further, synthetically challenging macrocycles could be obtained in good yield in an unusual example of ring-closing metathesis which does not involve alkene bonds. In-depth organometallic studies support a reversible Ni(0)-Ni(II) pathway to product formation. Overall, this work does not only disclose a more sustainable and more functional group tolerant alternative to previous catalytic systems based on Pd, but also presents new applications and mechanistic information which are highly relevant to the further development and application of unusual single bond metathesis reactions.

2019 ◽  
Author(s):  
Tristan Delcaillau ◽  
Alessandro Bismuto ◽  
Zhong Lian ◽  
Bill Morandi

A nickel-catalyzed carbon-sulfur bond metathesis has been developed to access high-value thioethers. 1,2-bis(dicyclohexylphosphino)ethane (dcype) is essential to promote this highly functional group tolerant reaction. Further, synthetically challenging macrocycles could be obtained in good yield in an unusual example of ring-closing metathesis which does not involve alkene bonds. In-depth organometallic studies support a reversible Ni(0)-Ni(II) pathway to product formation. Overall, this work does not only disclose a more sustainable and more functional group tolerant alternative to previous catalytic systems based on Pd, but also presents new applications and mechanistic information which are highly relevant to the further development and application of unusual single bond metathesis reactions.


2000 ◽  
Vol 78 (6) ◽  
pp. 868-883 ◽  
Author(s):  
Mark Lautens ◽  
Gregory Hughes ◽  
Valentin Zunic

A new class of bicyclic dienes which contain a σ plane of symmetry are efficiently prepared in a diastereoselective fashion using ring closing metathesis reactions. These molecules have potential as starting materials for a wide range of organic targets.Key words: metathesis, catalysis, stereoselective, decalin, desymmetrization.


Synthesis ◽  
2006 ◽  
Vol 2006 (23) ◽  
pp. 4087-4091 ◽  
Author(s):  
Santos Fustero ◽  
Elisabet Esteban ◽  
Juan Sanz-Cervera ◽  
Diego Jiménez ◽  
Fatemeh Mojarrad

2004 ◽  
Vol 2004 (4) ◽  
pp. 800-806 ◽  
Author(s):  
Sofia S. Salim ◽  
Richard K. Bellingham ◽  
Richard C. D. Brown

2015 ◽  
Vol 11 ◽  
pp. 2038-2056 ◽  
Author(s):  
Lorenzo Piola ◽  
Fady Nahra ◽  
Steven P Nolan

Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.


2003 ◽  
Vol 46 (7) ◽  
pp. 1165-1179 ◽  
Author(s):  
Fredrik Thorstensson ◽  
Ingemar Kvarnström ◽  
Djordje Musil ◽  
Ingemar Nilsson ◽  
Bertil Samuelsson

Synthesis ◽  
2019 ◽  
Vol 51 (05) ◽  
pp. 1100-1114 ◽  
Author(s):  
Emilia Groso ◽  
Corinna Schindler

This short review summarizes recent advances relating to the application of ring-closing olefin-olefin and carbonyl-olefin metathesis reactions towards the synthesis of unsaturated five- and six-membered nitrogen heterocycles. These developments include catalyst modifications and reaction designs that will enable access to more complex nitrogen heterocycles.1 Introduction2 Expansion of Ring-Closing Metathesis Methods3 Evaluation of Catalyst Design4 Indenylidene Catalysts5 Unsymmetrical N-Heterocyclic Carbene Ligands6 Carbonyl-Olefin Metathesis7 Conclusions


2020 ◽  
Vol 6 (26) ◽  
pp. eaba5778 ◽  
Author(s):  
Xuefei Zhang ◽  
Pengqiang Yan ◽  
Junkang Xu ◽  
Fan Li ◽  
Felix Herold ◽  
...  

Borocarbonitrides (BCNs) have emerged as highly selective catalysts for the oxidative dehydrogenation (ODH) reaction. However, there is a lack of in-depth understanding of the catalytic mechanism over BCN catalysts due to the complexity of the surface oxygen functional groups. Here, BCN nanotubes with multiple active sites are synthesized for oxygen-assisted methanol conversion reaction. The catalyst shows a notable activity improvement for methanol conversion (29%) with excellent selectivity to formaldehyde (54%). Kinetic measurements indicate that carboxylic acid groups on BCN are responsible for the formation of dimethyl ether, while the redox catalysis to formaldehyde occurs on both ketonic carbonyl and boron hydroxyl (B─OH) sites. The ODH reaction pathway on the B─OH site is further revealed by in situ infrared, x-ray absorption spectra, and density functional theory. The present work provides physical-chemical insights into the functional mechanism of BCN catalysts, paving the way for further development of the underexplored nonmetallic catalytic systems.


Sign in / Sign up

Export Citation Format

Share Document