scholarly journals Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal-Oxo Intermediate Formation

2019 ◽  
Author(s):  
Aditya Nandy ◽  
Jiazhou Zhu ◽  
Jon Paul Janet ◽  
Chenru Duan ◽  
Rachel Getman ◽  
...  

<p>Metal-oxo moieties are important catalytic intermediates in the selective partial oxidation of hydrocarbons and in water splitting. Stable metal-oxo species have reactive properties that vary depending on the spin state of the metal, complicating the development of structure-property relationships. To overcome these challenges, we train the first machine learning (ML) models capable of predicting metal-oxo formation energies across a range of first-row metals, oxidation states, and spin states. Using connectivity-only features tailored for inorganic chemistry as inputs to kernel ridge regression or artificial neural network ML models, we achieve good mean absolute errors (4-5 kcal/mol) on set-aside test data across a range of ligand orientations. Analysis of feature importance for oxo formation energy prediction reveals the dominance of non-local, electronic ligand properties in contrast to other transition metal complex properties (e.g., spin-state or ionization potential). We enumerate the theoretical catalyst space with an ANN, revealing both expected trends in oxo formation energetics, such as destabilization of the metal-oxo species with increasing <i>d</i>-filling, as well as exceptions, such as weak correlations with indicators of oxidative stability of the metal in the resting state or unexpected spin-state dependence in reactivity. We carry out uncertainty aware evolutionary optimization using the ANN to explore a > 37,000 candidate catalyst space. New metal and oxidation state combinations are uncovered and validated with density functional theory (DFT), including counter-intuitive oxo-formation energies for oxidatively stable complexes. This approach doubles the density of confirmed DFT leads in originally sparsely populated regions of property space, highlighting the potential of ML-model-driven discovery to uncover catalyst design rules and exceptions.</p>

Author(s):  
Aditya Nandy ◽  
Jiazhou Zhu ◽  
Jon Paul Janet ◽  
Chenru Duan ◽  
Rachel Getman ◽  
...  

<p>Metal-oxo moieties are important catalytic intermediates in the selective partial oxidation of hydrocarbons and in water splitting. Stable metal-oxo species have reactive properties that vary depending on the spin state of the metal, complicating the development of structure-property relationships. To overcome these challenges, we train the first machine learning (ML) models capable of predicting metal-oxo formation energies across a range of first-row metals, oxidation states, and spin states. Using connectivity-only features tailored for inorganic chemistry as inputs to kernel ridge regression or artificial neural network ML models, we achieve good mean absolute errors (4-5 kcal/mol) on set-aside test data across a range of ligand orientations. Analysis of feature importance for oxo formation energy prediction reveals the dominance of non-local, electronic ligand properties in contrast to other transition metal complex properties (e.g., spin-state or ionization potential). We enumerate the theoretical catalyst space with an ANN, revealing both expected trends in oxo formation energetics, such as destabilization of the metal-oxo species with increasing <i>d</i>-filling, as well as exceptions, such as weak correlations with indicators of oxidative stability of the metal in the resting state or unexpected spin-state dependence in reactivity. We carry out uncertainty aware evolutionary optimization using the ANN to explore a > 37,000 candidate catalyst space. New metal and oxidation state combinations are uncovered and validated with density functional theory (DFT), including counter-intuitive oxo-formation energies for oxidatively stable complexes. This approach doubles the density of confirmed DFT leads in originally sparsely populated regions of property space, highlighting the potential of ML-model-driven discovery to uncover catalyst design rules and exceptions.</p>


ACS Catalysis ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 8243-8255 ◽  
Author(s):  
Aditya Nandy ◽  
Jiazhou Zhu ◽  
Jon Paul Janet ◽  
Chenru Duan ◽  
Rachel B. Getman ◽  
...  

2019 ◽  
Author(s):  
Seoin Back ◽  
Kevin Tran ◽  
Zachary Ulissi

<div> <div> <div> <div><p>Developing active and stable oxygen evolution catalysts is a key to enabling various future energy technologies and the state-of-the-art catalyst is Ir-containing oxide materials. Understanding oxygen chemistry on oxide materials is significantly more complicated than studying transition metal catalysts for two reasons: the most stable surface coverage under reaction conditions is extremely important but difficult to understand without many detailed calculations, and there are many possible active sites and configurations on O* or OH* covered surfaces. We have developed an automated and high-throughput approach to solve this problem and predict OER overpotentials for arbitrary oxide surfaces. We demonstrate this for a number of previously-unstudied IrO2 and IrO3 polymorphs and their facets. We discovered that low index surfaces of IrO2 other than rutile (110) are more active than the most stable rutile (110), and we identified promising active sites of IrO2 and IrO3 that outperform rutile (110) by 0.2 V in theoretical overpotential. Based on findings from DFT calculations, we pro- vide catalyst design strategies to improve catalytic activity of Ir based catalysts and demonstrate a machine learning model capable of predicting surface coverages and site activity. This work highlights the importance of investigating unexplored chemical space to design promising catalysts.<br></p></div></div></div></div><div><div><div> </div> </div> </div>


2019 ◽  
Author(s):  
Siddhartha Laghuvarapu ◽  
Yashaswi Pathak ◽  
U. Deva Priyakumar

Recent advances in artificial intelligence along with development of large datasets of energies calculated using quantum mechanical (QM)/density functional theory (DFT) methods have enabled prediction of accurate molecular energies at reasonably low computational cost. However, machine learning models that have been reported so far requires the atomic positions obtained from geometry optimizations using high level QM/DFT methods as input in order to predict the energies, and do not allow for geometry optimization. In this paper, a transferable and molecule-size independent machine learning model (BAND NN) based on a chemically intuitive representation inspired by molecular mechanics force fields is presented. The model predicts the atomization energies of equilibrium and non-equilibrium structures as sum of energy contributions from bonds (B), angles (A), nonbonds (N) and dihedrals (D) at remarkable accuracy. The robustness of the proposed model is further validated by calculations that span over the conformational, configurational and reaction space. The transferability of this model on systems larger than the ones in the dataset is demonstrated by performing calculations on select large molecules. Importantly, employing the BAND NN model, it is possible to perform geometry optimizations starting from non-equilibrium structures along with predicting their energies.


2021 ◽  
Author(s):  
Hyuntae Lim ◽  
YounJoon Jung

Abstract Recent advances in machine learning technologies and their applications have led to the development of diverse structure-property relationship models for crucial chemical properties. The solvation free energy is one of them. Here, we introduce a novel ML-based solvation model, which calculates the solvation energy from pairwise atomistic interactions. The novelty of the proposed model consists of a simple architecture: two encoding functions extract atomic feature vectors from the given chemical structure, while the inner product between the two atomistic features calculates their interactions. The results of 6,493 experimental measurements achieve outstanding performance and transferability for enlarging training data owing to its solvent-non-specific nature. An analysis of the interaction map shows that our model has significant potential for producing group contributions on the solvation energy, which indicates that the model provides provides not only predictions of target properties but also more detailed physicochemical insights.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ziteng Liu ◽  
Yinghuan Shi ◽  
Hongwei Chen ◽  
Tiexin Qin ◽  
Xuejie Zhou ◽  
...  

AbstractMachine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Glavatskikh ◽  
Jules Leguy ◽  
Gilles Hunault ◽  
Thomas Cauchy ◽  
Benoit Da Mota

Abstract The QM9 dataset has become the golden standard for Machine Learning (ML) predictions of various chemical properties. QM9 is based on the GDB, which is a combinatorial exploration of the chemical space. ML molecular predictions have been recently published with an accuracy on par with Density Functional Theory calculations. Such ML models need to be tested and generalized on real data. PC9, a new QM9 equivalent dataset (only H, C, N, O and F and up to 9 “heavy” atoms) of the PubChemQC project is presented in this article. A statistical study of bonding distances and chemical functions shows that this new dataset encompasses more chemical diversity. Kernel Ridge Regression, Elastic Net and the Neural Network model provided by SchNet have been used on both datasets. The overall accuracy in energy prediction is higher for the QM9 subset. However, a model trained on PC9 shows a stronger ability to predict energies of the other dataset.


2020 ◽  
Author(s):  
Andrew Rosen ◽  
Shaelyn Iyer ◽  
Debmalya Ray ◽  
Zhenpeng Yao ◽  
Alan Aspuru-Guzik ◽  
...  

<p>Metal–organic frameworks (MOFs) are a widely investigated class of crystalline solids with tunable structures that make it possible to impart specific chemical functionality tailored for a given application. However, the enormous number of possible MOFs that can be synthesized makes it difficult to determine which materials would be the most promising candidates, especially for applications governed by electronic structure properties that are often computationally demanding to simulate and time-consuming to probe experimentally. Here, we have developed the first publicly available quantum-chemical database for MOFs (the “QMOF database”), which consists of properties derived from density functional theory (DFT) for over 14,000 experimentally synthesized MOFs. Throughout this study, we demonstrate how this new database can be used to identify MOFs with targeted electronic structure properties. As a proof-of-concept, we use the QMOF database to evaluate the performance of several machine learning models for the prediction of DFT-computed band gaps and find that crystal graph convolutional neural networks are capable of achieving superior predictive performance, making it possible to circumvent computationally expensive quantum-chemical calculations. We also show how unsupervised learning methods can aid the discovery of otherwise subtle structure–property relationships using the computational findings in this work. We conclude by highlighting several MOFs with low band gaps, a challenging task given the electronically insulating nature of most MOF structures. The data and predictive models generated in this work, as well as the database of MOF structures, should be highly useful to other researchers interested in the predictive design and discovery of MOFs for the many applications dictated by quantum-chemical phenomena.<br></p>


2020 ◽  
Author(s):  
Andrew Rosen ◽  
Shaelyn Iyer ◽  
Debmalya Ray ◽  
Zhenpeng Yao ◽  
Alan Aspuru-Guzik ◽  
...  

<p>Metal–organic frameworks (MOFs) are a widely investigated class of crystalline solids with tunable structures that make it possible to impart specific chemical functionality tailored for a given application. However, the enormous number of possible MOFs that can be synthesized makes it difficult to determine which materials would be the most promising candidates, especially for applications governed by electronic structure properties that are often computationally demanding to simulate and time-consuming to probe experimentally. Here, we have developed the first publicly available quantum-chemical database for MOFs (the “QMOF database”), which consists of properties derived from density functional theory (DFT) for over 14,000 experimentally synthesized MOFs. Throughout this study, we demonstrate how this new database can be used to identify MOFs with targeted electronic structure properties. As a proof-of-concept, we use the QMOF database to evaluate the performance of several machine learning models for the prediction of DFT-computed band gaps and find that crystal graph convolutional neural networks are capable of achieving superior predictive performance, making it possible to circumvent computationally expensive quantum-chemical calculations. We also show how unsupervised learning methods can aid the discovery of otherwise subtle structure–property relationships using the computational findings in this work. We conclude by highlighting several MOFs with low band gaps, a challenging task given the electronically insulating nature of most MOF structures. The data and predictive models generated in this work, as well as the database of MOF structures, should be highly useful to other researchers interested in the predictive design and discovery of MOFs for the many applications dictated by quantum-chemical phenomena.<br></p>


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Hyuntae Lim ◽  
YounJoon Jung

AbstractRecent advances in machine learning technologies and their applications have led to the development of diverse structure–property relationship models for crucial chemical properties. The solvation free energy is one of them. Here, we introduce a novel ML-based solvation model, which calculates the solvation energy from pairwise atomistic interactions. The novelty of the proposed model consists of a simple architecture: two encoding functions extract atomic feature vectors from the given chemical structure, while the inner product between the two atomistic feature vectors calculates their interactions. The results of 6239 experimental measurements achieve outstanding performance and transferability for enlarging training data owing to its solvent-non-specific nature. An analysis of the interaction map shows that our model has significant potential for producing group contributions on the solvation energy, which indicates that the model provides not only predictions of target properties but also more detailed physicochemical insights.


Sign in / Sign up

Export Citation Format

Share Document