scholarly journals Manometric Real-Time Studies of the Mechanochemical Synthesis of Zeolitic Imidazolate Frameworks

Author(s):  
Ivana Brekalo ◽  
Wenbing Yuan ◽  
Cristina Mottillo ◽  
Yuneng Lu ◽  
Yuancheng Zhang ◽  
...  

We demonstrate a method for real-time monitoring of mechanochemical synthesis of metal-organic frameworks, by measuring changes in pressure of gas produced in the reaction. Using this manometric method to monitor the mechanosynthesis of the zeolitic imidazolate framework ZIF-8 from basic zinc carbonate reveals an intriguing feedback mechanism in which the initially formed ZIF-8 reacts with the CO<sub>2</sub> byproduct to produce a complex metal carbonate phase, the structure of which is determined from powder X-ray diffraction data. Formation of the carbonate phase may be prevented by using excess ligand, leading to quantitative formation of ZIF-8. This reaction was performed on a 90 g scale, with the excess ligand removed by sublimation.

2019 ◽  
Author(s):  
Ivana Brekalo ◽  
Wenbing Yuan ◽  
Cristina Mottillo ◽  
Yuneng Lu ◽  
Yuancheng Zhang ◽  
...  

We demonstrate a method for real-time monitoring of mechanochemical synthesis of metal-organic frameworks, by measuring changes in pressure of gas produced in the reaction. Using this manometric method to monitor the mechanosynthesis of the zeolitic imidazolate framework ZIF-8 from basic zinc carbonate reveals an intriguing feedback mechanism in which the initially formed ZIF-8 reacts with the CO<sub>2</sub> byproduct to produce a complex metal carbonate phase, the structure of which is determined from powder X-ray diffraction data. Formation of the carbonate phase may be prevented by using excess ligand, leading to quantitative formation of ZIF-8. This reaction was performed on a 90 g scale, with the excess ligand removed by sublimation.


2020 ◽  
Vol 11 (8) ◽  
pp. 2141-2147 ◽  
Author(s):  
Ivana Brekalo ◽  
Wenbing Yuan ◽  
Cristina Mottillo ◽  
Yuneng Lu ◽  
Yuancheng Zhang ◽  
...  

We demonstrate a simple method for real-time monitoring of mechanochemical synthesis of metal–organic frameworks, by measuring changes in pressure of gas produced in the reaction.


2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


2021 ◽  
Author(s):  
Meng Ge ◽  
Yanzhi Wang ◽  
Francesco Carraro ◽  
Weibin Liang ◽  
Morteza Roostaeinia ◽  
...  

<p>Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1<a>, </a>was first discovered in a trace amount during the study of a known ZIF-CO<sub>3</sub>-1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm<sup>-</sup>). With a composition of Zn<sub>3</sub>(mIm)<sub>5</sub>(OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalysis for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications. </p>


2013 ◽  
Vol 52 (44) ◽  
pp. 11665-11665
Author(s):  
Ivan Halasz ◽  
Andreas Puškarić ◽  
Simon A. J. Kimber ◽  
Patrick J. Beldon ◽  
Ana M. Belenguer ◽  
...  

2013 ◽  
Vol 125 (44) ◽  
pp. 11752-11755 ◽  
Author(s):  
Ivan Halasz ◽  
Andreas Puškarić ◽  
Simon A. J. Kimber ◽  
Patrick J. Beldon ◽  
Ana M. Belenguer ◽  
...  

2013 ◽  
Vol 125 (44) ◽  
pp. 11881-11881
Author(s):  
Ivan Halasz ◽  
Andreas Puškarić ◽  
Simon A. J. Kimber ◽  
Patrick J. Beldon ◽  
Ana M. Belenguer ◽  
...  

2021 ◽  
Author(s):  
Meng Ge ◽  
Yanzhi Wang ◽  
Francesco Carraro ◽  
Weibin Liang ◽  
Morteza Roostaeinia ◽  
...  

<p>Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1<a>, </a>was first discovered in a trace amount during the study of a known ZIF-CO<sub>3</sub>-1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm<sup>-</sup>). With a composition of Zn<sub>3</sub>(mIm)<sub>5</sub>(OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalysis for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications. </p>


2021 ◽  
Author(s):  
Meng Ge ◽  
Yanzhi Wang ◽  
Francesco Carraro ◽  
Weibin Liang ◽  
Morteza Roostaeinia ◽  
...  

<p>Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1<a>, </a>was first discovered in a trace amount during the study of a known ZIF-CO<sub>3</sub>-1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm<sup>-</sup>). With a composition of Zn<sub>3</sub>(mIm)<sub>5</sub>(OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalysis for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications. </p>


Sign in / Sign up

Export Citation Format

Share Document