zinc carbonate
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 33)

H-INDEX

20
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7607
Author(s):  
Peter Kis ◽  
Eva Horváthová ◽  
Eliška Gálová ◽  
Andrea Ševčovičová ◽  
Veronika Antalová ◽  
...  

Tyrosol (T) and hydroxytyrosol (HOT) and their glycosides are promising candidates for applications in functional food products or in complementary therapy. A series of phenylethanoid glycofuranosides (PEGFs) were synthesized to compare some of their biochemical and biological activities with T and HOT. The optimization of glycosylation promoted by environmentally benign basic zinc carbonate was performed to prepare HOT α-L-arabino-, β-D-apio-, and β-D-ribofuranosides. T and HOT β-D-fructofuranosides, prepared by enzymatic transfructosylation of T and HOT, were also included in the comparative study. The antioxidant capacity and DNA-protective potential of T, HOT, and PEGFs on plasmid DNA were determined using cell-free assays. The DNA-damaging potential of the studied compounds for human hepatoma HepG2 cells and their DNA-protective potential on HepG2 cells against hydrogen peroxide were evaluated using the comet assay. Experiments revealed a spectrum of different activities of the studied compounds. HOT and HOT β-D-fructofuranoside appear to be the best-performing scavengers and protectants of plasmid DNA and HepG2 cells. T and T β-D-fructofuranoside display almost zero or low scavenging/antioxidant activity and protective effects on plasmid DNA or HepG2 cells. The results imply that especially HOT β-D-fructofuranoside and β-D-apiofuranoside could be considered as prospective molecules for the subsequent design of supplements with potential in food and health protection.


2021 ◽  
pp. 132-140

Our research conducted at the Department of Soil Management was aimed at investigating whether maize (Zea mays L.) would respond to a supply of zinc as a micro-element. We expected an increased yield and/or improvements in certain quality factors, such as a greater oil and starch contents. Soil fertilization experiments were performed with a basic zinc-carbonate active agent, under field conditions, in brown forest soil with clay illuviation, in a random block arrangement. Four iterations of the experiments were done in the vicinity of Zimány village in South-West Hungary. Maize served as our test crop. In 2010 we tested the first-year impact of the active agent, while in 2011 we evaluated its retard effect. In 2010 each of the examined quality attributes showed most improvement in response to the 100 kg ha-1 treatment, which corresponded to the largest dose applied in the study. Out of the examined yield elements the average values of the cob mass and the unfertilized cob length were greatest in 2011, because of the 25 kg ha-1 treatment, the lowest dose in the experiment, while with respect to the grain/cob ratio the 50 kg ha-1 treatment was found the most effective.


2021 ◽  
pp. 162916
Author(s):  
Wen Liang ◽  
Jie Bai ◽  
Zengsheng Li ◽  
Yong Meng ◽  
Kaixiang Liu ◽  
...  

2021 ◽  
Vol 98 ◽  
pp. 14-18
Author(s):  
Thao Nguyen Thi ◽  
◽  
Nam Pham Ky ◽  
Ngoc Tran Vu Diem

Brass melting slag (20.38 wt.% Zn) was leached in sulfuric acid with concentration of (50 + 80) g/l H2SO4, leaching temperature of (30 + 60) °C for (30 + 120) min. The optimized conditions for 94.16% Zn extraction from brass melting slag were found as 70 g/l H2SO4, room temperature and 90 min. The leaching solution was purified by removal of Fe through Fe(OH)3 precipitation when adding ZnO to adjust pH value of 5. The solution was continuously cemented by Zn metal at 60 °C for 60 min to obtain Cu metal with high purity of 99 wt.% Cu. The purified solution with 37.64 g/l Zn was modified by Na2C03 to have pH value of about 6 and precipitation of ZnC03 (94.14 %).


2021 ◽  
Vol 11 (21) ◽  
pp. 9969
Author(s):  
Marat Rudakov ◽  
Ruslan Babkin ◽  
Ekaterina Medova

The article presents comparison of the values of maximum permissible concentrations, revealed during the analysis of the national standards of Russia and Australia in the field of regulation of nitrogen oxides. The impact of poisoning of the workers of the quarry with nitrogen oxides after blasting operations are presented. A detailed review of studies of methods for reducing nitrogen oxide emissions is given. The way of decreasing emission of nitrogen oxides using highly active catalysts as a part of the profiled tamping is offered. Laboratory studies were carried out using a model explosive and pentaerythritol tetranitrate. The results obtained showed that zinc carbonate (ZnCO3) is the most effective. The reduction in the amount of nitrogen oxide emissions was 40% of that released during experiments without the addition of catalysts.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1133
Author(s):  
Hui Li ◽  
Yutian Fu ◽  
Jinglong Liang ◽  
Le Wang ◽  
Hongyan Yan ◽  
...  

With the increase of zinc resource consumption, the recovery and utilization of zinc resources in zinc suboxide has become one of the current research hotspots. In this study, the electrochemical method was used to remove the impurities in the zinc leaching night and enrich the zinc ferrite in the ammonia leaching residue for the solution and ammonia leaching slag after the ammonia leaching of zinc hypoxide, in order to realize the comprehensive utilization of the essence of zinc immersion night and new resources. The results showed that the reduction potentials of copper, lead, cadmium, and zinc in the ammonia leaching solution were analyzed by electrochemical testing methods to be −0.76 V, −0.82 V, −0.94 V, and −1.3 V, respectively. Through constant potential electrodeposition, the removal rate of copper, lead, cadmium. The removal rate of cadmium is 98.73%, and the removal rate of lead and copper is more than 99%. The purified ammonia leaching solution is evaporated at 90 °C for 25 min to obtain basic zinc carbonate. The purity of ZnO obtained after calcination at 500 °C for 120 min is 96.31%. The ammonia leaching residue was pickled with 3 mol·L−1 acetic acid for 30 min to effectively remove PbCO3, and then magnetic separation was carried out with a current intensity of 1.4 A. The final zinc ferrite content was 83.83%.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1983
Author(s):  
Crissie D. Zanrosso ◽  
Sandra M. Miranda ◽  
Batuira M. da Costa da Costa Filho ◽  
Jonathan C. Espíndola ◽  
Diego Piazza ◽  
...  

Polymeric composite films have been explored for many photocatalytic applications, from water treatment to self-cleaning devices. Their properties, namely, thickness and porosity, are controlled mainly by the preparation conditions. However, little has been discussed on the effect of thickness and porosity of polymeric composite films for photocatalytic processes, especially in gas phase. In the present study, different preparation treatments of ZnO-based polymeric composite films and their effects on its performance and stability were investigated. The polymeric composites were prepared by solution mixing followed by non-solvent induced phase separation (NIPS), using poly(vinylidene fluoride) (PVDF) as the matrix and ZnO-based photocatalysts. Different wet thickness, photocatalyst mass, and treatments (e.g., using or not pore-forming agent and compatibilizer) were assessed. A low ZnO/PVDF ratio and higher wet thickness, together with the use of pore-forming agent and compatibilizer, proved to be a good strategy for increasing photocatalytic efficiency given the low agglomerate formation and high polymer transmittance. Nonetheless, the composites exhibited deactivation after several minutes of exposure. Characterization by XRD, FTIR-ATR, and SEM were carried out to further investigate the polymeric film treatments and stability. ZnO film was most likely deactivated due to zinc carbonate formation intensified by the polymer presence.


Sign in / Sign up

Export Citation Format

Share Document