Various Techniques for Controlling Transmit Power in Cognitive Radio: Survey

Author(s):  
Sarika Devi
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Weili Ge ◽  
Zhengyu Zhu ◽  
Zhongyong Wang ◽  
Zhengdao Yuan

We investigate multiple-input single-output secured cognitive radio networks relying on simultaneous wireless information and power transfer (SWIPT), where a multiantenna secondary transmitter sends confidential information to multiple single-antenna secondary users (SUs) in the presence of multiple single-antenna primary users (PUs) and multiple energy-harvesting receivers (ERs). In order to improve the security of secondary networks, we use the artificial noise (AN) to mask the transmit beamforming. Optimization design of AN-aided transmit beamforming is studied, where the transmit power of the information signal is minimized subject to the secrecy rate constraint, the harvested energy constraint, and the total transmit power. Based on a successive convex approximation (SCA) method, we propose an iterative algorithm which reformulates the original problem as a convex problem under the perfect channel state information (CSI) case. Also, we give the convergence of the SCA-based iterative algorithm. In addition, we extend the original problem to the imperfect CSI case with deterministic channel uncertainties. Then, we study the robust design problem for the case with norm-bounded channel errors. Also, a robust SCA-based iterative algorithm is proposed by adopting the S-Procedure. Simulation results are presented to validate the performance of the proposed algorithms.


2017 ◽  
Vol 65 (7) ◽  
pp. 2769-2780 ◽  
Author(s):  
Zan Li ◽  
Shuijun Cheng ◽  
Feifei Gao ◽  
Ying-Chang Liang

2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Dawei Wang ◽  
Pinyi Ren ◽  
Qinghe Du ◽  
Li Sun ◽  
Yichen Wang

Aiming at allocating more licensed spectrum to wireless sensor nodes (SNs) under the constraint of the information security requirement of the primary system, in this paper, we propose a cooperative relaying and jamming secure transmission (CRJS) scheme in which SNs will relay primary message and jam primary eavesdrop concurrently with SN’s downlink and uplink information transmission in cognitive radio sensor networks (CRSNs). In our proposed CRJS scheme, SNs take advantages of physical layer secure technologies to protect the primary transmission and acquire some interference-free licensed spectrum as a reward. In addition, both decode-and-forward (DF) and amplify-and-forward (AF) relaying protocols are investigated in our proposed CRJS scheme. Our object is to maximize the transmission rate of SNs by optimal allocating of the relaying power, jamming power, and downlink and uplink transmit power under the target secure transmission rate requirement of the primary system. Moreover, two suboptimal algorithms are proposed to deal with these optimization problems. Furthermore, we analyze the transmission rate of SNs and allocate the relaying power, jamming power, and downlink and uplink transmit power for the asymptotic scenarios. Simulation results demonstrate the performance superiority of our developed strategy over conventional jamming scheme in terms of the transmission rate of WSN.


2020 ◽  
Vol 68 (7) ◽  
pp. 4022-4034 ◽  
Author(s):  
Yifan Zhou ◽  
Fuhui Zhou ◽  
Huilin Zhou ◽  
Derrick Wing Kwan Ng ◽  
Rose Qingyang Hu

2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Zhou Yang ◽  
Wenqian Jiang ◽  
Gang Li

Green cognitive radios are promising in future wireless communications due to high energy efficiency. Energy efficiency maximization problems are formulated in delay-insensitive green cognitive radio and delay-sensitive green cognitive radio. The optimal resource allocation strategies for delay-insensitive green cognitive radio and delay-sensitive green cognitive radio are designed to maximize the energy efficiency of the secondary user. The peak interference power and the average/peak transmit power constraints are considered. Two algorithms based on the proposed resource allocation strategies are proposed to solve the formulated problems. Simulation results show that the maximum energy efficiency of the secondary user achieved under the average transmit power constraint is higher than that achieved under the peak transmit power constraint. It is shown that the design of green cognitive radio should take the tradeoff between its complexity and its achievable maximum energy efficiency into consideration.


Sign in / Sign up

Export Citation Format

Share Document