Hybrid Task Scheduling Algorithm Based on ANT Colony Optimization and Particle Swarm Optimization for Cloud Environment

2018 ◽  
Vol 6 (2) ◽  
pp. 324-328
Author(s):  
D. Gupta ◽  
◽  
H.J.S. Sidhu ◽  
2010 ◽  
Vol 108-111 ◽  
pp. 392-397
Author(s):  
Peng Cheng Wei ◽  
Xi Shi

Based on particle swarm optimization algorithm, this paper presents a grid scheduling optimization algorithm combing the advantages of Ant Colony optimization algorithm. The algorithm processes task scheduling through particle swarm optimization algorithm to get a group of relatively optimal solutions, and then conducts small-area local search with Ant Colony optimization algorithm. Theoretical analysis and results of the simulation experiments show that this scheduling algorithm effectively achieves load balancing of resources with comprehensive advantages in time efficiency and solution accuracy compared to the traditional Ant Colony optimization algorithm and particle swarm optimizationalgorithm, and can be applied to task scheduling in grid computing.


Cloud computing is a framework which provides on-demand services to the user for scalability, security, and reliability based on pay as used service anytime & anywhere. For load balancing, task scheduling is the most critical issues in the cloud environment. There are so many meta-heuristic algorithms used to solve the load balancing problem. A good task scheduling algorithm should be used for optimum load balancing in cloud environment. Such scheduling algorithm must have some vital characteristic like minimum makespan, maximum throughput, and maximum resource utilization, etc. In this paper, a dynamic load balancing and task scheduling algorithm based on ant colony optimization (DLBACO) has been proposed. This algorithm assigns the task the VM which has highest probability of availability in minimum time. The proposed algorithm balances the whole system by minimizing the makespan of the task and maximizing the throughput. CloudSim simulator is used to simulate the proposed scheduling algorithm and results show that the proposed (DLBACO) algorithm is better than the existing algorithms such as FCFS, LBACO (Load balancing ACO), and primary ACO


Author(s):  
Zhou Wu ◽  
Jun Xiong

With the characteristics of low cost, high availability, and scalability, cloud computing has become a high demand platform in the field of information technology. Due to the dynamic and diversity of cloud computing system, the task and resource scheduling has become a challenging issue. This paper proposes a novel task scheduling algorithm of cloud computing based on particle swarm optimization. Firstly, the resource scheduling problem in cloud computing system is modeled, and the objective function of the task execution time is formulated. Then, the modified particle swarm optimization algorithm is introduced to schedule applications' tasks and enhance load balancing. It uses Copula function to explore the relation of the random parameters random numbers and defines the local attractor to avoid the fitness function to be trapped into local optimum. The simulation results show that the proposed resource scheduling and allocation model can effectively improve the resource utilization of cloud computing and greatly reduce the completion time of tasks.


2021 ◽  
Vol 14 (1) ◽  
pp. 270-280
Author(s):  
Abhijit Halkai ◽  
◽  
Sujatha Terdal ◽  

A sensor network operates wirelessly and transmits detected information to the base station. The sensor is a small sized device, it is battery-powered with some electrical components, and the protocols should operate efficiently in such least resource availability. Here, we propose a novel improved framework in large scale applications where the huge numbers of sensors are distributed over an area. The designed protocol will address the issues that arise during its communication and give a consistent seamless communication system. The process of reasoning and learning in cognitive sensors guarantees data delivery in the network. Localization in Scarce and dense sensor networks is achieved by efficient cluster head election and route selection which are indeed based on cognition, improved Particle Swarm Optimization, and improved Ant Colony Optimization algorithms. Factors such as mobility, use of sensor buffer, power management, and defects in channels have been identified and solutions are presented in this research to build an accurate path based on the network context. The achieved results in extensive simulation prove that the proposed scheme outperforms ESNA, NETCRP, and GAECH algorithms in terms of Delay, Network lifetime, Energy consumption.


Sign in / Sign up

Export Citation Format

Share Document