K-modes and Fuzzy C-means with modified Particle Swam Optimization Clustering Algorithm for Epilepsy Seizure Data

2019 ◽  
Vol 7 (1) ◽  
pp. 73-77
Author(s):  
C.V. Banupriya ◽  
D. Deviaruna
2020 ◽  
Vol 8 (1) ◽  
pp. 84-90
Author(s):  
R. Lalchhanhima ◽  
◽  
Debdatta Kandar ◽  
R. Chawngsangpuii ◽  
Vanlalmuansangi Khenglawt ◽  
...  

Fuzzy C-Means is an unsupervised clustering algorithm for the automatic clustering of data. Synthetic Aperture Radar Image Segmentation has been a challenging task because of the presence of speckle noise. Therefore the segmentation process can not directly rely on the intensity information alone but must consider several derived features in order to get satisfactory segmentation results. In this paper, it is attempted to use the fuzzy nature of classification for the purpose of unsupervised region segmentation in which FCM is employed. Different features are obtained by filtering of the image by using different spatial filters and are selected for segmentation criteria. The segmentation performance is determined by the accuracy compared with a different state of the art techniques proposed recently.


2020 ◽  
Vol 15 ◽  
pp. 155892502097832
Author(s):  
Jiaqin Zhang ◽  
Jingan Wang ◽  
Le Xing ◽  
Hui’e Liang

As the precious cultural heritage of the Chinese nation, traditional costumes are in urgent need of scientific research and protection. In particular, there are scanty studies on costume silhouettes, due to the reasons of the need for cultural relic protection, and the strong subjectivity of manual measurement, which limit the accuracy of quantitative research. This paper presents an automatic measurement method for traditional Chinese costume dimensions based on fuzzy C-means clustering and silhouette feature point location. The method is consisted of six steps: (1) costume image acquisition; (2) costume image preprocessing; (3) color space transformation; (4) object clustering segmentation; (5) costume silhouette feature point location; and (6) costume measurement. First, the relative total variation model was used to obtain the environmental robustness and costume color adaptability. Second, the FCM clustering algorithm was used to implement image segmentation to extract the outer silhouette of the costume. Finally, automatic measurement of costume silhouette was achieved by locating its feature points. The experimental results demonstrated that the proposed method could effectively segment the outer silhouette of a costume image and locate the feature points of the silhouette. The measurement accuracy could meet the requirements of industrial application, thus providing the dual value of costume culture research and industrial application.


2016 ◽  
Vol 18 (4) ◽  
pp. 609-617 ◽  
Author(s):  
Tong Zhang ◽  
Long Chen ◽  
C. L. Philip Chen

2013 ◽  
Vol 284-287 ◽  
pp. 3537-3542
Author(s):  
Chin Chun Chen ◽  
Yuan Horng Lin ◽  
Jeng Ming Yih

Knowledge Management of Mathematics Concepts was essential in educational environment. The purpose of this study is to provide an integrated method of fuzzy theory basis for individualized concept structure analysis. This method integrates Fuzzy Logic Model of Perception (FLMP) and Interpretive Structural Modeling (ISM). The combined algorithm could analyze individualized concepts structure based on the comparisons with concept structure of expert. Fuzzy clustering algorithms are based on Euclidean distance function, which can only be used to detect spherical structural clusters. A Fuzzy C-Means algorithm based on Mahalanobis distance (FCM-M) was proposed to improve those limitations of GG and GK algorithms, but it is not stable enough when some of its covariance matrices are not equal. A new improved Fuzzy C-Means algorithm based on a Normalized Mahalanobis distance (FCM-NM) is proposed. Use the best performance of clustering Algorithm FCM-NM in data analysis and interpretation. Each cluster of data can easily describe features of knowledge structures. Manage the knowledge structures of Mathematics Concepts to construct the model of features in the pattern recognition completely. This procedure will also useful for cognition diagnosis. To sum up, this integrated algorithm could improve the assessment methodology of cognition diagnosis and manage the knowledge structures of Mathematics Concepts easily.


Sign in / Sign up

Export Citation Format

Share Document