Enhanced clustering algorithm based on fuzzy C-means and support vector machine

2013 ◽  
Vol 33 (4) ◽  
pp. 991-993
Author(s):  
Lei HU ◽  
Qinzhou NIU ◽  
Yan CHEN
Author(s):  
Khaled Assi ◽  
Syed Masiur Rahman ◽  
Umer Mansoor ◽  
Nedal Ratrout

Predicting crash injury severity is a crucial constituent of reducing the consequences of traffic crashes. This study developed machine learning (ML) models to predict crash injury severity using 15 crash-related parameters. Separate ML models for each cluster were obtained using fuzzy c-means, which enhanced the predicting capability. Finally, four ML models were developed: feed-forward neural networks (FNN), support vector machine (SVM), fuzzy C-means clustering based feed-forward neural network (FNN-FCM), and fuzzy c-means based support vector machine (SVM-FCM). Features that were easily identified with little investigation on crash sites were used as an input so that the trauma center can predict the crash severity level based on the initial information provided from the crash site and prepare accordingly for the treatment of the victims. The input parameters mainly include vehicle attributes and road condition attributes. This study used the crash database of Great Britain for the years 2011–2016. A random sample of crashes representing each year was used considering the same share of severe and non-severe crashes. The models were compared based on injury severity prediction accuracy, sensitivity, precision, and harmonic mean of sensitivity and precision (i.e., F1 score). The SVM-FCM model outperformed the other developed models in terms of accuracy and F1 score in predicting the injury severity level of severe and non-severe crashes. This study concluded that the FCM clustering algorithm enhanced the prediction power of FNN and SVM models.


2021 ◽  
Vol 9 (3) ◽  
pp. 618-629
Author(s):  
Hoda Khanali ◽  
Babak Vaziri

Fuzzy VIKOR C-means (FVCM) is a kind of unsupervised fuzzy clustering algorithm that improves the accuracyand computational speed of Fuzzy C-means (FCM). So it reduces the sensitivity to noisy and outlier data, and enhances performance and quality of clusters. Since FVCM allocates some data to a specific cluster based on similarity technique, reducing the effect of noisy data increases the quality of the clusters. This paper presents a new approach to the accurate location of noisy data to the clusters overcoming the constraints of noisy points through fuzzy support vector machine (FSVM), called FVCM-FSVM, so that at each stage samples with a high degree of membership are selected for training in the classification of FSVM. Then, the labels of the remaining samples are predicted so the process continues until the convergence of the FVCM-FSVM. The results of the numerical experiments showed the proposed approach has better performance than FVCM. Of course, it greatly achieves high accuracy.


Author(s):  
Xiang Yu ◽  
Guangfeng Bu ◽  
Bingyue Peng ◽  
Chen Zhang ◽  
Xiaolan Yang ◽  
...  

Agriculture productivity is the main factor for improving economic status of India. Reduction in production rate is mainly due to various diseases in plants. Identification of plant disease in early stage is the main challenge for improving the production rate as well as economic status. This paper presents automatic disease detection in cotton crop for three types of diseases Alternaria Leaf Spot Fungal Disease (ALSFD), Grey Mildew Cotton Disease (GMCD), and Rust Foliar Fungal Disease (RFFD). The K-means clustering algorithm is used for disease segmentation for cotton leaf. The diseased cluster is segmented into three clusters. From cluster 2 the features Mean , Contrast, Energy, Correlation, Standard Deviation, Variance , Entropy, and Kurtosis are extracted. The extracted features for 30 samples are given to Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers for disease classification. The performance of these classifiers are compared. The ALSF disease is classified 77.4% for ANN and 84.3% for SVM, GMC disease is 87.8% for ANN and 98.7% in SVM, RFF disease is 90.1%for ANN and 93.2% for SVM. The overall average accuracy of ANN classifier is 85.1% for three diseases and overall average accuracy for SVM is 92.06% for three diseases. It is clearly observed from the analysis SVM classifier gives accurate disease detection compared to ANN.


Sign in / Sign up

Export Citation Format

Share Document