scholarly journals Logical Querying of Relational Databases

2016 ◽  
Vol 5 (4) ◽  
pp. 58
Author(s):  
Luminita Pistol ◽  
Radu BUCEA-MANEA-TONIS

This paper aims to demonstrate the usefulness of formal logic and lambda calculus in database programming. After a short introduction in propositional and first order logic, we implement dynamically a small database and translate some SQL queries in filtered java 8 streams, enhanced with Tuples facilities from jOOλ library.   

2009 ◽  
pp. 596-614 ◽  
Author(s):  
I. Koffina ◽  
G. Serfiotis ◽  
V. Christophides ◽  
V. Tannen

Semantic Web (SW) technology aims to facilitate the integration of legacy data sources spread worldwide. Despite the plethora of SW languages (e.g., RDF/S, OWL) recently proposed for supporting large-scale information interoperation, the vast majority of legacy sources still rely on relational databases (RDB) published on the Web or corporate intranets as virtual XML. In this article, we advocate a first-order logic framework for mediating high-level queries to relational and/or XML sources using community ontologies expressed in a SW language such as RDF/S. We describe the architecture and reasoning services of our SW integration middleware, termed SWIM, and we present the main design choices and techniques for supporting powerful mappings between different data models, as well as reformulation and optimization of queries expressed against mediator ontologies and views.


10.29007/22x6 ◽  
2018 ◽  
Author(s):  
Sylvia Grewe ◽  
Sebastian Erdweg ◽  
Mira Mezini

Type systems for programming languages shall detect type errors in programs before runtime. To ensure that a type system meets this requirement, its soundness must be formally verified. We aim at automating soundness proofs of type systems to facilitate the development of sound type systems for domain-specific languages.Soundness proofs for type systems typically require induction. However, many of the proofs of individual induction cases only require first-order reasoning. For the development of our workbench Veritas, we build on this observation by combining automated first-order theorem provers such as Vampire with automated proof strategies specific to type systems. In this paper, we describe how we encode type soundness proofs in first-order logic using TPTP. We show how we use Vampire to prove the soundness of type systems for the simply-typed lambda calculus and for parts of a typed SQL. We report on which parts of the proofs are handled well by Vampire, and what parts work less well with our current approach.


Author(s):  
Grigory Olkhovikov ◽  
Guillermo Badia

Abstract In the style of Lindström’s theorem for classical first-order logic, this article characterizes propositional bi-intuitionistic logic as the maximal (with respect to expressive power) abstract logic satisfying a certain form of compactness, the Tarski union property and preservation under bi-asimulations. Since bi-intuitionistic logic introduces new complexities in the intuitionistic setting by adding the analogue of a backwards looking modality, the present paper constitutes a non-trivial modification of the previous work done by the authors for intuitionistic logic (Badia and Olkhovikov, 2020, Notre Dame Journal of Formal Logic, 61, 11–30).


1993 ◽  
Vol 22 (462) ◽  
Author(s):  
Claudio Alberto Hermida

<p>Within the framework of categorical logic/type theory, we provide a category-theoretic account of some logical concepts, i.e. first-order logical predicates for simply typed lambda-calculus, structural induction for inductive data types, and indeterminates for polymorphic calculi.</p><p> </p><p>The main concept which underlies the issues above is that of fibration, which gives an abstract presentation of the indexing present in all cases: predicates indexed by types/contexts in first-order logic and types indexed by kinds in polymorphic calculi.</p><p>The characterisation of the logical concepts in terms of fibrations relies on a fundamental property of adjunctions between fibrations, which in particular relates some structure in the total category of a fibration with that of the fibres. Suitable instances of this property reflect the above-mentioned logical concepts in an abstract way, independently of their syntactic presentation, thereby illuminating their main features.</p>


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


Sign in / Sign up

Export Citation Format

Share Document