scholarly journals Spatial distribution characteristics and mechanism of nonhydrological time-variable gravity in mainland China

2022 ◽  
Vol 6 (0) ◽  
pp. 0-0
Author(s):  
Yue Shen ◽  
◽  
QiuYu Wang ◽  
WeiLong Rao ◽  
WenKe Sun
2021 ◽  
Vol 13 (16) ◽  
pp. 3075
Author(s):  
Ming Xu ◽  
Xiaoyun Wan ◽  
Runjing Chen ◽  
Yunlong Wu ◽  
Wenbing Wang

This study compares the Gravity Recovery And Climate Experiment (GRACE)/GRACE Follow-On (GFO) errors with the coseismic gravity variations generated by earthquakes above Mw8.0s that occurred during April 2002~June 2017 and evaluates the influence of monthly model errors on the coseismic signal detection. The results show that the precision of GFO monthly models is approximately 38% higher than that of the GRACE monthly model and all the detected earthquakes have signal-to-noise ratio (SNR) larger than 1.8. The study concludes that the precision of the time-variable gravity fields should be improved by at least one order in order to detect all the coseismic gravity signals of earthquakes with M ≥ 8.0. By comparing the spectral intensity distribution of the GFO stack errors and the 2019 Mw8.0 Peru earthquake, it is found that the precision of the current GFO monthly model meets the requirement to detect the coseismic signal of the earthquake. However, due to the limited time length of the observations and the interference of the hydrological signal, the coseismic signals are, in practice, difficult to extract currently.


2021 ◽  
Vol 13 (1) ◽  
pp. 796-806
Author(s):  
Zhen Shuo ◽  
Zhang Jingyu ◽  
Zhang Zhengxiang ◽  
Zhao Jianjun

Abstract Understanding the risk of grassland fire occurrence associated with historical fire point events is critical for implementing effective management of grasslands. This may require a model to convert the fire point records into continuous spatial distribution data. Kernel density estimation (KDE) can be used to represent the spatial distribution of grassland fire occurrences and decrease the influences historical records in point format with inaccurate positions. The bandwidth is the most important parameter because it dominates the amount of variation in the estimation of KDE. In this study, the spatial distribution characteristic of the points was considered to determine the bandwidth of KDE with the Ripley’s K function method. With high, medium, and low concentration scenes of grassland fire points, kernel density surfaces were produced by using the kernel function with four bandwidth parameter selection methods. For acquiring the best maps, the estimated density surfaces were compared by mean integrated squared error methods. The results show that Ripley’s K function method is the best bandwidth selection method for mapping and analyzing the risk of grassland fire occurrence with the dependent or inaccurate point variable, considering the spatial distribution characteristics.


Sign in / Sign up

Export Citation Format

Share Document