scholarly journals A hybrid forecasting framework based on support vector regression with a modified genetic algorithm and a random forest for traffic flow prediction

2018 ◽  
Vol 23 (4) ◽  
pp. 479-492 ◽  
Author(s):  
Lizong Zhang ◽  
Nawaf R Alharbe ◽  
Guangchun Luo ◽  
Zhiyuan Yao ◽  
Ying Li
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xianglong Luo ◽  
Danyang Li ◽  
Yu Yang ◽  
Shengrui Zhang

The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic guidance, management, and control. To improve the prediction accuracy, a spatiotemporal traffic flow prediction method is proposed combined with k-nearest neighbor (KNN) and long short-term memory network (LSTM), which is called KNN-LSTM model in this paper. KNN is used to select mostly related neighboring stations with the test station and capture spatial features of traffic flow. LSTM is utilized to mine temporal variability of traffic flow, and a two-layer LSTM network is applied to predict traffic flow respectively in selected stations. The final prediction results are obtained by result-level fusion with rank-exponent weighting method. The prediction performance is evaluated with real-time traffic flow data provided by the Transportation Research Data Lab (TDRL) at the University of Minnesota Duluth (UMD) Data Center. Experimental results indicate that the proposed model can achieve a better performance compared with well-known prediction models including autoregressive integrated moving average (ARIMA), support vector regression (SVR), wavelet neural network (WNN), deep belief networks combined with support vector regression (DBN-SVR), and LSTM models, and the proposed model can achieve on average 12.59% accuracy improvement.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhaosheng Yang ◽  
Duo Mei ◽  
Qingfang Yang ◽  
Huxing Zhou ◽  
Xiaowen Li

To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM) model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface). The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.


2021 ◽  
pp. 2150245
Author(s):  
Xiaoquan Wang ◽  
Wenjun Li ◽  
Chaoying Yin ◽  
Shaoyu Zeng ◽  
Peng Liu

This study proposes a short-term traffic flow prediction approach based on multiple traffic flow basic parameters, in which the chaos theory and support vector regression are utilized. First, a high-dimensional variable space can be obtained according to the traffic flow fundamental function. Then, a maximum conditional entropy method is proposed to determine the embedding dimension. And multiple time series are reconstructed based on the phase space reconstruction theory using the time delay obtained by mutual information method and the embedding dimension captured by the maximum conditional entropy method. Finally, the reconstructed phase space is used as the input and the support vector regression optimized by the genetic algorithm is utilized to predict the traffic flow. Numerical experiments are performed and the results show that the approach proposed has strong fitting capability and better prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document