MRF model based real‐time traffic flow prediction with support vector regression

2017 ◽  
Vol 53 (4) ◽  
pp. 243-245 ◽  
Author(s):  
E.Y. Kim
2021 ◽  
Author(s):  
W.-Z. Xiong ◽  
X.-M. Shen ◽  
H.-J. Li ◽  
Z. Shen

Abstract Real-time prediction of traffic flow values in a short period of time is an importantelement in building a traffic management system. The uncertainty, complexity andnonlinearity of traffic flow data make it difficult to predict traffic flow in real time,and the accurate traffic flow prediction has been an urgent problem in the industry.Based on the research of scholars, a traffic flow prediction model based on thecorrelation vector machine method is constructed. The prediction accuracy of thecorrelation vector machine is better than that of the logistic regression and supportvector machine methods, and the correlation vector machine method has the functionof generating prediction error range for the actual traffic sequence data. Theprediction results are very satisfactory, and the prediction speed is significantlyfaster than the other two models, which meets the requirement of real-time trafficflow prediction and is suitable for real-time online prediction, and the predictionaccuracy of the used method is relatively high. The three-way comparison analysisshows that the traffic flow prediction by the correlation vector machine methodcan describe the nonlinear characteristics of traffic flow change more accurately,and the model performance and real-time performance are better. The case studyshows that the traffic flow prediction model based on the correlation vector machinecan improve the speed and accuracy of prediction, which is very suitablefor traffic flow prediction estimation with real-time requirements, and provides ascientific method for real-time traffic flow measurement.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xianglong Luo ◽  
Danyang Li ◽  
Yu Yang ◽  
Shengrui Zhang

The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic guidance, management, and control. To improve the prediction accuracy, a spatiotemporal traffic flow prediction method is proposed combined with k-nearest neighbor (KNN) and long short-term memory network (LSTM), which is called KNN-LSTM model in this paper. KNN is used to select mostly related neighboring stations with the test station and capture spatial features of traffic flow. LSTM is utilized to mine temporal variability of traffic flow, and a two-layer LSTM network is applied to predict traffic flow respectively in selected stations. The final prediction results are obtained by result-level fusion with rank-exponent weighting method. The prediction performance is evaluated with real-time traffic flow data provided by the Transportation Research Data Lab (TDRL) at the University of Minnesota Duluth (UMD) Data Center. Experimental results indicate that the proposed model can achieve a better performance compared with well-known prediction models including autoregressive integrated moving average (ARIMA), support vector regression (SVR), wavelet neural network (WNN), deep belief networks combined with support vector regression (DBN-SVR), and LSTM models, and the proposed model can achieve on average 12.59% accuracy improvement.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhaosheng Yang ◽  
Duo Mei ◽  
Qingfang Yang ◽  
Huxing Zhou ◽  
Xiaowen Li

To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM) model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface). The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.


2014 ◽  
Vol 988 ◽  
pp. 715-718
Author(s):  
Jia Yang Li ◽  
Qin Xue ◽  
Jin De Liu

Short-term traffic flow forecasting is a core problem in Intelligent Transportation System .Considering linear and nonlinear, this paper proposes a short-term traffic flow intelligent combination approach. The weight of four forecasting model is given by the correlation coefficient and standard deviation method. The experimental results show that the new approach of real-time traffic flow prediction is higher precision than single method.


2021 ◽  
pp. 2150245
Author(s):  
Xiaoquan Wang ◽  
Wenjun Li ◽  
Chaoying Yin ◽  
Shaoyu Zeng ◽  
Peng Liu

This study proposes a short-term traffic flow prediction approach based on multiple traffic flow basic parameters, in which the chaos theory and support vector regression are utilized. First, a high-dimensional variable space can be obtained according to the traffic flow fundamental function. Then, a maximum conditional entropy method is proposed to determine the embedding dimension. And multiple time series are reconstructed based on the phase space reconstruction theory using the time delay obtained by mutual information method and the embedding dimension captured by the maximum conditional entropy method. Finally, the reconstructed phase space is used as the input and the support vector regression optimized by the genetic algorithm is utilized to predict the traffic flow. Numerical experiments are performed and the results show that the approach proposed has strong fitting capability and better prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document