scholarly journals Spatiotemporal Traffic Flow Prediction with KNN and LSTM

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xianglong Luo ◽  
Danyang Li ◽  
Yu Yang ◽  
Shengrui Zhang

The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic guidance, management, and control. To improve the prediction accuracy, a spatiotemporal traffic flow prediction method is proposed combined with k-nearest neighbor (KNN) and long short-term memory network (LSTM), which is called KNN-LSTM model in this paper. KNN is used to select mostly related neighboring stations with the test station and capture spatial features of traffic flow. LSTM is utilized to mine temporal variability of traffic flow, and a two-layer LSTM network is applied to predict traffic flow respectively in selected stations. The final prediction results are obtained by result-level fusion with rank-exponent weighting method. The prediction performance is evaluated with real-time traffic flow data provided by the Transportation Research Data Lab (TDRL) at the University of Minnesota Duluth (UMD) Data Center. Experimental results indicate that the proposed model can achieve a better performance compared with well-known prediction models including autoregressive integrated moving average (ARIMA), support vector regression (SVR), wavelet neural network (WNN), deep belief networks combined with support vector regression (DBN-SVR), and LSTM models, and the proposed model can achieve on average 12.59% accuracy improvement.

2021 ◽  
pp. 2150245
Author(s):  
Xiaoquan Wang ◽  
Wenjun Li ◽  
Chaoying Yin ◽  
Shaoyu Zeng ◽  
Peng Liu

This study proposes a short-term traffic flow prediction approach based on multiple traffic flow basic parameters, in which the chaos theory and support vector regression are utilized. First, a high-dimensional variable space can be obtained according to the traffic flow fundamental function. Then, a maximum conditional entropy method is proposed to determine the embedding dimension. And multiple time series are reconstructed based on the phase space reconstruction theory using the time delay obtained by mutual information method and the embedding dimension captured by the maximum conditional entropy method. Finally, the reconstructed phase space is used as the input and the support vector regression optimized by the genetic algorithm is utilized to predict the traffic flow. Numerical experiments are performed and the results show that the approach proposed has strong fitting capability and better prediction accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chunyan Shuai ◽  
Zhengyang Pan ◽  
Lun Gao ◽  
HongWu Zuo

Real-time expressway traffic flow prediction is always an important research field of intelligent transportation, which is conducive to inducing and managing traffic flow in case of congestion. According to the characteristics of the traffic flow, this paper proposes a hybrid model, SSA-LSTM-SVR, to improve forecasting accuracy of the short-term traffic flow. Singular Spectrum Analysis (SSA) decomposes the traffic flow into one principle component and three random components, and then in terms of different characteristics of these components, Long Short-Term Memory (LSTM) and Support Vector Regression (SVR) are applied to make prediction of different components, respectively. By fusing respective forecast results, SSA-LSTM-SVR obtains the final short-term predictive value. Experiments on the traffic flows of Guizhou expressway in January 2016 show that the proposed SSA-LSTM-SVR model has lower predictive errors and a higher accuracy and fitting goodness than other baselines. This illustrates that a hybrid model for traffic flow prediction based on components decomposition is more effective than a single model, since it can capture the main regularity and random variations of traffic flow.


Author(s):  
Di Yang ◽  
◽  
Ningjia Qiu ◽  
Peng Wang ◽  
Huamin Yang

Traffic flow prediction is one of the fundamental components in Intelligent Transportation Systems (ITS). Many traffic flow prediction models have been developed, but with limitation of noise sensitivity, which will result in poor generalization. Fused Lasso, also known as total variation denoising, penalizes L1-norm on the model coefficients and pairwise differences between neighboring coefficients, has been widely used to analyze highly correlated features with a natural order, as is the case with traffic flow. It denoises data by encouraging both sparsity of coefficients and their differences, and estimates the coefficients of highly correlated variables to be equal to each other. However, for traffic data, the same coefficients will lead to overexpression of features, and losing the trend of time series of traffic flow. In this work, we propose a Fused Ridge multi-task learning (FR-MTL) model for multi-road traffic flow prediction. It introduces Fused Ridge for traffic data denoising, imposes penalty on L2-norm of the coefficients and their differences. The penalty of L2-norm proportionally shrinks coefficients, and generates smooth coefficient vectors with non-sparsity. It has both capability of trend preservation and denoising. In addition, we jointly consider multi-task learning (MTL) for training shared spatiotemporal information among traffic roads. The experiments on real traffic data show the advantages of the proposed model over other four regularized baseline models, and on traffic data with Gaussian noise and missing data, the FR-MTL model demonstrates potential and promising capability with satisfying accuracy and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document