ACHIEVABLE UPLINK CAPACITY WITH LINEAR DETECTORS AND TRADE-OFF BETWEEN SPECTRAL EFFICIENCY AND ENERGY EFFICIENCY FOR MASSIVE MIMO SYSTEM

Author(s):  
K. BHATT MAHARSHI ◽  
S. SEDANI BHAVIN ◽  
K.R. PARMAR ◽  
◽  
◽  
...  
2019 ◽  
Vol 106 (2) ◽  
pp. 897-910 ◽  
Author(s):  
A. Salh ◽  
L. Audah ◽  
N. S. M. Shah ◽  
S. A. Hamzah

2021 ◽  
Author(s):  
Ibrahim Salah ◽  
M. Mourad Mabrook ◽  
Kamel Hussein Rahouma ◽  
Aziza I. Hussein

Abstract Given that the exponential pace of growth in wireless traffic has continued for more than a century, wireless communication is one of the most influential innovations in recent years. Massive Multiple-Input Multiple-Output (M-MIMO) is a promising technology for meeting the world's exponential growth in mobile data traffic, particularly in 5G networks. The most critical metrics in the massive MIMO scheme are Spectral Efficiency (SE) and Energy Efficiency (EE). For single-cell MMIMO uplink transmission, energy and spectral-efficiency trade-offs have to be estimated by optimizing the number of base station antennas versus the number of active users. This paper proposes an adaptive optimization technique focusing on maximizing Energy Efficiency at full spectral efficiency using a Genetic Algorithm (GA) optimizer. The number of active antennas is estimated according to the change in the number of active users based on the proposed GA scheme that optimizes the EE in the M-MIMO system. Simulation results show that the GA optimization technique achieved the maximum energy efficiency of the 5G M-MIMO platform and the maximum efficiency in the trade-off process.


Author(s):  
Adeb Salh ◽  
Lukman Audah ◽  
Qazwan Abdullah ◽  
Norsaliza Abdullah ◽  
Nor Shahida Mohd Shah ◽  
...  

Author(s):  
Adeeb Salh ◽  
Lukman Audah ◽  
Nor Shahida M. Shah ◽  
Shipun A. Hamzah

<span>Massive multi-input–multi-output (MIMO) systems are crucial to maximizing energy efficiency (EE) and battery-saving technology. Achieving EE without sacrificing the quality of service (QoS) is increasingly important for mobile devices. We first derive the data rate through zero forcing (ZF) and three linear precodings: maximum ratio transmission (MRT), zero forcing (ZF), and minimum mean square error (MMSE). Performance EE can be achieved when all available antennas are used and when taking account of the consumption circuit power ignored because of high transmit power. The aim of this work is to demonstrate how to obtain maximum EE while minimizing power consumed, which achieves a high data rate by deriving the optimal number of antennas in the downlink massive MIMO system. This system includes not only the transmitted power but also the fundamental operation circuit power at the transmitter signal. Maximized EE depends on the optimal number of antennas and determines the number of active users that should be scheduled in each cell. We conclude that the linear precoding technique MMSE achieves the maximum EE more than ZF and MRT</span><em></em><span>because the MMSE is able to make the massive MIMO system less sensitive to SNR at an increased number of antennas</span><span>.</span>


Sign in / Sign up

Export Citation Format

Share Document