scholarly journals Maximizing Energy Efficiency for Consumption Circuit Power in Downlink Massive MIMO Wireless Networks

Author(s):  
Adeeb Salh ◽  
Lukman Audah ◽  
Nor Shahida M. Shah ◽  
Shipun A. Hamzah

<span>Massive multi-input–multi-output (MIMO) systems are crucial to maximizing energy efficiency (EE) and battery-saving technology. Achieving EE without sacrificing the quality of service (QoS) is increasingly important for mobile devices. We first derive the data rate through zero forcing (ZF) and three linear precodings: maximum ratio transmission (MRT), zero forcing (ZF), and minimum mean square error (MMSE). Performance EE can be achieved when all available antennas are used and when taking account of the consumption circuit power ignored because of high transmit power. The aim of this work is to demonstrate how to obtain maximum EE while minimizing power consumed, which achieves a high data rate by deriving the optimal number of antennas in the downlink massive MIMO system. This system includes not only the transmitted power but also the fundamental operation circuit power at the transmitter signal. Maximized EE depends on the optimal number of antennas and determines the number of active users that should be scheduled in each cell. We conclude that the linear precoding technique MMSE achieves the maximum EE more than ZF and MRT</span><em></em><span>because the MMSE is able to make the massive MIMO system less sensitive to SNR at an increased number of antennas</span><span>.</span>

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 391 ◽  
Author(s):  
Jiamin Li ◽  
Qian Lv ◽  
Jing Yang ◽  
Pengcheng Zhu ◽  
Xiaohu You

In this paper, considering a more realistic case where the low-resolution analog-to-digital convertors (ADCs) are employed at receiver antennas, we investigate the spectral and energy efficiency in multi-cell multi-user distributed massive multi-input multi-output (MIMO) systems with two linear receivers. An additive quantization noise model is provided first to study the effects of quantization noise. Using the model provided, the closed-form expressions for the uplink achievable rates with a zero-forcing (ZF) receiver and a maximum ratio combination (MRC) receiver under quantization noise and pilot contamination are derived. Furthermore, the asymptotic achievable rates are also given when the number of quantization bits, the per user transmit power, and the number of antennas per remote antenna unit (RAU) go to infinity, respectively. Numerical results prove that the theoretical analysis is accurate and show that quantization noise degrades the performance in spectral efficiency, but the growth in the number of antennas can compensate for the degradation. Furthermore, low-resolution ADCs with 3 or 4 bits outperform perfect ADCs in energy efficiency. Numerical results imply that it is preferable to use low-resolution ADCs in distributed massive MIMO systems.


Author(s):  
Robin Chataut ◽  
Robert Akl

The global bandwidth shortage in the wireless communication sector has motivated the study and exploration of wireless access technology known as massive Multiple-Input Multiple-Output (MIMO). Massive MIMO is one of the key enabling technology for next-generation networks, which groups together antennas at both transmitter and the receiver to provide high spectral and energy efficiency using relatively simple processing. Obtaining a better understating of the massive MIMO system to overcome the fundamental issues such as&nbsp;pilot contamination, channel estimation, precoding, user scheduling, energy efficiency, and signal detection is vital for the successful deployment of 5G and beyond networks. Some of the recent trends in massive MIMO are terahertz communication, ultra massive MIMO (UM-MIMO), visible light communication (VLC), machine learning, and deep learning.&nbsp;


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 795
Author(s):  
Xiaoxuan Xia ◽  
Wence Zhang ◽  
Yinkai Fu ◽  
Xu Bao ◽  
Jing Xia

To compromise between the system performance and hardware cost, millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems have been regarded as an enabling technology for the fifth generation of mobile communication systems (5G). This paper considers a low-complexity angular-domain compressing based detection (ACD) for uplink multi-user mmWave massive MIMO systems, which involves hybrid analog and digital processing. In analog processing, we perform angular-domain compression on the received signal by exploiting the sparsity of the mmWave channel to reduce the dimension of the signal space. In digital processing, the proposed ACD scheme works well with zero forcing (ZF)/maximum ratio combining (MRC)/minimum mean square error (MMSE) detection schemes. The performance analysis of the proposed ACD scheme is provided in terms of achievable rates, energy efficiency and computational complexity. Simulations are carried out and it shows that compared with existing works, the proposed ACD scheme not only reduces the computational complexity by more than 50 % , but also improves the system’s achievable rates and energy efficiency.


Author(s):  
Thanh-Binh Nguyen ◽  
Minh-Tuan Le ◽  
Vu-Duc Ngo ◽  
Tien-Dong Nguyen ◽  
Huy-Dung Han

In Multiple Input Multiple Output (MIMO) systems, the complexities of detectors depend on the size of the channel matrix. In Massive MIMO systems, detection complexity becomes remarkably higher because the dimensions of the channel matrix get much larger. In order to recover the signals in the up-link of a Massive MIMO system at reduced complexities, we first divide the system into two sub-systems. After that, we apply the Minimum Mean Square Error (MMSE) and Bell Laboratory Layer Space Time (BLAST) detectors to each subsystem, resulting in the so-called MMSE-GD and BLAST-GD detectors, respectively. To further enhance the BER performance of Massive MIMO systems under the high-load conditions, we propose two additional detectors, called MMSE-IGD and BLAST-IGD by respectively applying the conventional MMSE and BLAST on the sub-systems in an iterative manner. It is shown via computer simulation and analytical results that the proposed detectors enable the system to achieve not only higher BER performance but also low detection complexities as compared to the conventional linear detectors. Moreover, the MMSE-IGD and BLAST-IGD can significantly improve BER performance of Massive MIMO systems.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2753 ◽  
Author(s):  
Robin Chataut ◽  
Robert Akl

The global bandwidth shortage in the wireless communication sector has motivated the study and exploration of wireless access technology known as massive Multiple-Input Multiple-Output (MIMO). Massive MIMO is one of the key enabling technology for next-generation networks, which groups together antennas at both transmitter and the receiver to provide high spectral and energy efficiency using relatively simple processing. Obtaining a better understating of the massive MIMO system to overcome the fundamental issues of this technology is vital for the successful deployment of 5G—and beyond—networks to realize various applications of the intelligent sensing system. In this paper, we present a comprehensive overview of the key enabling technologies required for 5G and 6G networks, highlighting the massive MIMO systems. We discuss all the fundamental challenges related to pilot contamination, channel estimation, precoding, user scheduling, energy efficiency, and signal detection in a massive MIMO system and discuss some state-of-the-art mitigation techniques. We outline recent trends such as terahertz communication, ultra massive MIMO (UM-MIMO), visible light communication (VLC), machine learning, and deep learning for massive MIMO systems. Additionally, we discuss crucial open research issues that direct future research in massive MIMO systems for 5G and beyond networks.


2018 ◽  
Vol 7 (4.1) ◽  
pp. 33
Author(s):  
Adeeb Salh ◽  
Lukman Audah ◽  
Nor. S. M. Shah ◽  
Shipun. A. Hamzah

Energy efficiency (EE) is one of the key design goals for fifth-generation (5G) cellular networks due to the intermittent properties of renewable energy sources and limited battery capacity. In this paper, we analyze the EE of downlink (DL) massive multi-user multiple-input multiple-output (MIMO) system based on circuit power consumption for the transmit antenna configuration. We designed full complexity reduced zero-forcing (ZF) beamforming to cancel out interbeam interference when the number of antennas   and minimized the power consumption model, when formulating the power allocation optimization problem with the Lagrange duality method, in order to maximize EE. Simulation results revealed that the EE in the base station (BS) could be improved when the number of radio frequency (RF) chains was proportional to the optimal transmit power allocation and when the consumption circuit power was comparable to the transmit power.  


Sign in / Sign up

Export Citation Format

Share Document