SIMULATION OF BOILING HEAT TRANSFER USING A HYBRID PSEUDOPOTENTIAL LATTICE BOLTZMANN METHOD

Author(s):  
Matheus Guzella ◽  
Luiz Czelusniak ◽  
Vinicius Pessoa Mapelli ◽  
Luben Cabezas Gómez
Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1358
Author(s):  
Matheus dos Santos Guzella ◽  
Luiz Eduardo Czelusniak ◽  
Vinícius Pessoa Mapelli ◽  
Pablo Fariñas Alvariño ◽  
Gherhardt Ribatski ◽  
...  

The pseudopotential Lattice Boltzmann Method has attracted much attention in the recent years for the simulation of boiling heat transfer. Many studies have been published recently for the simulation of the bubble cycle (nucleation, growth and departure from a heated surface). This paper puts forward two-dimensional simulations of bubble nucleation, growth and departure using an improved pseudopotential Lattice Boltzmann Model from the literature at different reduced temperatures, Tr=0.76 and Tr=0.86. Two different models using the Bhatnagar–Gross–Krook (BGK) and the Multiple-Relaxation-Time (MRT) collision operators with appropriate forcing schemes are used. The results for pool boiling show that the bubbles exhibit axial symmetry during growth and departure. Numerical results of departure diameter and release period for pool boiling are compared against empirical correlations from the literature by varying the gravitational acceleration. Reasonable agreement is observed. Nucleate boiling trends with heat flux are also captured by the simulations. Numerical results of flow boiling simulations are compared by varying the Reynolds number for both reduced temperatures with the MRT model. It was found that the departure diamenter and release period decreases with the increase of the Reynolds number. These results are a direct effect of the drag force. Proper conclusions are commented at the end of the paper.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Kaushik Mondal ◽  
Anandaroop Bhattacharya

Abstract This paper reports our numerical studies on pool boiling heat transfer from a plane and with protruding surface using single component pseudo-potential phase change model of lattice Boltzmann method. The surface protrusions are assumed to be rectangular in shape with a given height and width. The surface protrusions are seen to promote nucleation of bubbles from the heated surface resulting in significantly higher heat transfer rates compared to the plane surface. Spatial and temporal averaged heat fluxes from all these protruding surfaces are found to be 3–4 times higher than that of a plane surface. The effects of the protrusion height, width, spacing, and associated geometrical parameters on surface heat flux have been investigated in order to arrive at an optimal design for maximum heat transfer.


Sign in / Sign up

Export Citation Format

Share Document