Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method

Author(s):  
Shuai Gong ◽  
Ping Cheng
2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Kaushik Mondal ◽  
Anandaroop Bhattacharya

Abstract This paper reports our numerical studies on pool boiling heat transfer from a plane and with protruding surface using single component pseudo-potential phase change model of lattice Boltzmann method. The surface protrusions are assumed to be rectangular in shape with a given height and width. The surface protrusions are seen to promote nucleation of bubbles from the heated surface resulting in significantly higher heat transfer rates compared to the plane surface. Spatial and temporal averaged heat fluxes from all these protruding surfaces are found to be 3–4 times higher than that of a plane surface. The effects of the protrusion height, width, spacing, and associated geometrical parameters on surface heat flux have been investigated in order to arrive at an optimal design for maximum heat transfer.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Jie Qin ◽  
Zhiguo Xu ◽  
Xiaofei Ma

Abstract Based on the newly developed geometrical model of open-cell metal foam, pool boiling heat transfer in open-cell metal foam, considering thermal responses of foam skeletons, is investigated by the phase-change lattice Boltzmann method (LBM). Pool boiling patterns are obtained at different heat fluxes. The effects of pore density and foam thickness on bubble dynamics and pool boiling heat transfer are revealed. The results show that “bubble entrainment” promotes fluid mixing and bubble sliding inside metal foam. Based on force analysis, the sliding bubble is pinned on the heating surface and cannot lift off completely at high heat flux due to the increasing surface tension force. Pool boiling heat transfer coefficient decreases with increasing pore density and foam thickness due to high bubble escaping resistance.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1358
Author(s):  
Matheus dos Santos Guzella ◽  
Luiz Eduardo Czelusniak ◽  
Vinícius Pessoa Mapelli ◽  
Pablo Fariñas Alvariño ◽  
Gherhardt Ribatski ◽  
...  

The pseudopotential Lattice Boltzmann Method has attracted much attention in the recent years for the simulation of boiling heat transfer. Many studies have been published recently for the simulation of the bubble cycle (nucleation, growth and departure from a heated surface). This paper puts forward two-dimensional simulations of bubble nucleation, growth and departure using an improved pseudopotential Lattice Boltzmann Model from the literature at different reduced temperatures, Tr=0.76 and Tr=0.86. Two different models using the Bhatnagar–Gross–Krook (BGK) and the Multiple-Relaxation-Time (MRT) collision operators with appropriate forcing schemes are used. The results for pool boiling show that the bubbles exhibit axial symmetry during growth and departure. Numerical results of departure diameter and release period for pool boiling are compared against empirical correlations from the literature by varying the gravitational acceleration. Reasonable agreement is observed. Nucleate boiling trends with heat flux are also captured by the simulations. Numerical results of flow boiling simulations are compared by varying the Reynolds number for both reduced temperatures with the MRT model. It was found that the departure diamenter and release period decreases with the increase of the Reynolds number. These results are a direct effect of the drag force. Proper conclusions are commented at the end of the paper.


2015 ◽  
Vol 25 (5) ◽  
pp. 1214-1230 ◽  
Author(s):  
Tao Sun ◽  
Weizhong Li ◽  
Bo Dong

Purpose – The purpose of this paper is to test the feasibility of lattice Boltzmann method (LBM) for numerical simulation of nucleate boiling and transition boiling. In addition, the processes of nucleate and transition boiling on vertical wall are simulated. The heat transfer mechanism is discussed based on the evolution of temperature field. Design/methodology/approach – In this paper, nucleate boiling and transition boiling are numerically investigated by LBM. A lattice Boltzmann (LB) multiphase model combining with a LB thermal model is used to predict the phase-change process. Findings – Numerical results are in good agreement with existing experimental results. Numerical results confirm the feasibility of the hybrid LBM for direct simulations of nucleate and transition boiling. The data exhibit correct parametric dependencies of bubble departure diameter compared with experimental correlation and relevant references. Research limitations/implications – All the simulations are performed in two-dimensions in this paper. In the future work, the boiling process will be simulated in three-dimensional. Practical implications – This study demonstrated a potential model that can be applied to the investigation of phase change heat transfer, which is one of the effective techniques for enhance the heat transfer in engineering. The numerical results can be considered as a basic work or a reference for generalizing LB method in the practical application about nucleate boiling and transition boiling. Originality/value – The hybrid LBM is first used for simulation of nucleate and transition boiling on vertical surface. Heat transfer mechanism during boiling is discussed based on the numerical results.


Sign in / Sign up

Export Citation Format

Share Document