INVESTIGATION OF LIFT AND DRAG COEFFICIENTS FOR A LOW REYNOLDS NUMBER AIRFOIL APPLIED TO SMALL URBAN WIND TURBINES

Author(s):  
Mauro Ferraz ◽  
Jerson Vaz ◽  
Erick Oliveira do Nascimento
2012 ◽  
Vol 42 ◽  
pp. 66-76 ◽  
Author(s):  
Ronit K. Singh ◽  
M. Rafiuddin Ahmed ◽  
Mohammad Asid Zullah ◽  
Young-Ho Lee

Author(s):  
Jason R. Gregg ◽  
Timothy A. Burdett ◽  
Kenneth W. Van Treuren ◽  
Stephen T. McClain

Wind turbines have become a significant part of the world’s energy equation and are expected to become even more important in the years to come. A much-neglected area within wind turbine research is small-scale, fixed-pitch wind turbines with typical power outputs in the 1–10 kW range. This size wind system would be ideal for residential and small commercial applications. The adoption of these systems could reduce dependence on the aging U.S. power grid. It is possible to optimize a small-scale system to operate more efficiently at lower wind speeds, which will make wind generation possible in areas where current wind technology is not feasible. This investigation examines the use of the S818 airfoil, a typical blade root airfoil designed by the National Renewable Energy Laboratory (NREL), as a basis for the design of low Reynolds number (less than 200,000) systems. The literature shows that many of the airfoils proposed for wind turbine applications, including the S818, only have lift and drag data generated by numerical simulations. In previous research at Baylor, 2-D simulations published by NREL have been shown to predict an optimal design angle of attack (which is the angle at which L/D is maximized) up to 2.25° different from actual wind tunnel data. In this study, the lift and drag generated by the S818 airfoil has been measured experimentally at a Reynolds number of approximately 150,000 and compared with NREL simulation data, showing a discrepancy of 1.0°. Using the S818 airfoil, a set of wind turbine blades has been designed to collect wind turbine power data in wind tunnel testing. Design parameters investigated include the effect of design tip speed ratios (TSR) (1, 3, and 7) and the influence of the number of blades (2, 3 and 4) on power generated. At the low Reynolds numbers tested (ranging from 14,000–43,200 along the blade for a design TSR of 3 and a wind speed of 10 mph), the effect of roughness was explored as a performance enhancing technique and was seen to increase power output by delaying separation. Under these low Reynolds number conditions, separation typically occurs on smooth blades. However, the roughness acted as a passive flow control, keeping the flow attached and increasing power output. Preliminary data suggest that as much as a 50% improvement can be realized with the addition of roughness elements for a TSR of 3. Additionally, the increase in power output due to roughness is comparable with the increase in power due to adding another smooth blade.


Author(s):  
Mazharul Islam ◽  
M. Ruhul Amin ◽  
Yasir M. Shariff

Selection of airfoil is crucial for better aerodynamic performance and design of aerodynamic applications such as wind turbine and aircrafts. In this paper, a high-lift and low-Reynolds number airfoil has been selected and investigated through computational analysis for applying it for small-sized wind turbines as blades. The S1223 airfoil, designed by the University of Illinois at Urbana-Champaign, was chosen for its high-lift characteristics at low Reynolds number typically encountered by the small wind turbines. CFD work is performed with S1223 airfoil profile over a wide range of conditions of interest to analyze the performance of the airfoil using the Spalart-Allmaras turbulence model. The results obtained from the simulation works have been compared with experimental data for validation purpose. It has been found that the Spalart-Allmaras model conforms well with the experimental results, though the values of lift coefficients (Cl) are slightly less than the experimental results. In the present analysis, velocity distributions are analyzed at different angle of attacks for different turbulence intensities. It has been observed that there is vortex shedding around the trailing edge of the airfoil for both turbulence levels. It has been observed in the present study that due to increase in turbulence intensity, both the maximum lift coefficient and the stall angle increases significantly. It has been found after investigating the effect of turbulence intensity over lift-to-drag coefficient ratio that it drastically decreases due to increase in turbulence intensity up to certain value (about 3.5%), then it starts decreasing in gradual manner.


Author(s):  
Alireza Naderi ◽  
Alireza Beiki ◽  
Bahram Tarvirdizadeh

The main purpose of present work is to investigate the aerodynamic performance of a pitching NACA 0012 airfoil equipped with a Gurney flap in flow with low Reynolds number. The aerodynamic influences of flap location, mounting angle, and height are numerically studied. In this regard, a Lagrangian–Eulerian pressure-based numerical algorithm is developed on hybrid grids attached to a pitching solid boundary. A finite volume-based finite element method is used to discretize the governing equations. As reported in previously related studies, this unified algorithm could be used to solve the unsteady incompressible flow in domains with moving mesh and/or moving boundary with sufficient robustness and accuracy. The other advantage of this algorithm is that it does not need any type of dissipation term and/or damping function. Using this unified algorithm, the numerical experiments indicate that the Gurney flap increases the lift and drag coefficients and enhances the aerodynamic efficiency. The best aerodynamic performance is predicted for the case in which the flap is located at trailing edge with the mounting angle of 90°. The flap height is predicted to have different and most impacts on aerodynamic efficiency during upstroke and downstroke. The numerical results show that the airfoils equipped by flaps with height between 6% and 12% of the airfoil chord are the most aerodynamically efficient airfoils. Changing of lift and drag coefficients are due to increase of effective camber and thickness in all cases.


Sign in / Sign up

Export Citation Format

Share Document