Flexural Wave Band Gaps in Phononic Crystal Thick Plates with Defects

Author(s):  
Edson Jansen Pedrosa de Miranda Junior ◽  
Jose Maria Campos dos Santos
Author(s):  
Edson Jansen Pedrosa de Miranda ◽  
José Maria Campos dos Santos

2012 ◽  
Vol 376 (4) ◽  
pp. 579-583 ◽  
Author(s):  
Yuanwei Yao ◽  
Fugen Wu ◽  
Xin Zhang ◽  
Zhilin Hou

2010 ◽  
Vol 81 (21) ◽  
Author(s):  
Abdelkrim Khelif ◽  
Younes Achaoui ◽  
Sarah Benchabane ◽  
Vincent Laude ◽  
Boujamaa Aoubiza

Wave Motion ◽  
2019 ◽  
Vol 91 ◽  
pp. 102391 ◽  
Author(s):  
E.J.P. Miranda Jr. ◽  
J.M.C. Dos Santos

2019 ◽  
Vol 116 ◽  
pp. 480-504 ◽  
Author(s):  
E.J.P. Miranda ◽  
E.D. Nobrega ◽  
A.H.R. Ferreira ◽  
J.M.C. Dos Santos

2015 ◽  
Vol 29 (03) ◽  
pp. 1550002 ◽  
Author(s):  
Yinggang Li ◽  
Tianning Chen ◽  
Xiaopeng Wang

In this paper, we theoretically investigate the band structures of Lamb wave in one-dimensional radial phononic crystal (PC) slabs composed of a series of alternating strips of epoxy and aluminum. The dispersion relations, the power transmission spectra and the displacement fields of the eigenmodes are calculated by using the finite element method based on two-dimensional axial symmetry models in cylindrical coordinates. The axial symmetry model is validated by three-dimensional finite element model in Cartesian coordinates. Numerical results show that the proposed radial PC slabs can yield several complete band gaps with a variable bandwidth exist for elastic waves. Furthermore, the effects of the filling fraction and the slab thickness on the band gaps are further explored numerically. It is worth observing that, with the increase of the filling fraction, both the lower and upper edges of the band gaps are simultaneously shifted to higher frequency, which results from the enhancement interaction between the rigid resonance of the scatterer and the matrix. The slab thickness is the key parameter for the existence and the width of complete band gaps in the radial PC slabs. These properties of Lamb waves in the radial PC plates can potentially be applied to optimize band gaps, generate filters and design acoustic devices in the rotary machines and structures.


Author(s):  
Xinya Zhang ◽  
Ted Jackson ◽  
Emmanuel Lafound ◽  
Pierre Deymier ◽  
Jerome Vasseur

Novel phononic crystal structures on thin plates for material science applications in ultrasonic range (~ MHz) are described. Phononic crystals are created by a periodic arrangement of two or more materials displaying a strong contrast in their elastic properties and density. Because of the artificial periodic elastic structures of phononic crystals, there can exist frequency ranges in which waves cannot propagate, giving rise to phononic band gaps which are analogous to photonic band gaps for electromagnetic waves in the well-documented photonic crystals. In the past decades, the phononic structures and acoustic band gaps based on bulk materials have been researched in length. However few investigations have been performed on phononic structures on thin plates to form surface acoustic wave band gaps. In this presentation, we report a new approach: patterning two dimensional membranes to form phononic crystals, searching for specific acoustic transport properties and surface acoustic waves band gaps through a series of deliberate designs and experimental characterizations. The proposed phononic crystals are numerically simulated through a three-dimensional plane wave expansion (PWE) method and experimentally characterized by a laser ultrasonics instrument that has been developed in our laboratory.


Author(s):  
Weijian Zhou ◽  
Bin Wu ◽  
Yipin Su ◽  
Dongying Liu ◽  
Weiqiu Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document