Solution of the Neutron Point Kinetics equations by applying the Rosenbrock method

Author(s):  
Natália Schaun ◽  
Fernanda Tumelero ◽  
Claudio Zen Petersen
2009 ◽  
Vol 24 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Xue Yang ◽  
Tatjana Jevremovic

The fourth order Rosenbrock method with an automatic step size control feature was described and applied to solve the reactor point kinetics equations. A FORTRAN 90 program was developed to test the computational speed and algorithm accuracy. From the results of various benchmark tests with different types of reactivity insertions, the Rosenbrock method shows high accuracy, high efficiency and stable character of the solution.


Author(s):  
Chi Wang ◽  
Xuebei Zhang ◽  
Jingchao Feng ◽  
Muhammad Shehzad Khan ◽  
Minyou Ye ◽  
...  

The simulation of 3D thermal-hydraulic problem for the pool type fast reactors, is one of the necessary and great importance. Most system codes can’t be used to simulate multi-dimensional thermal-hydraulics problems, whereas, the CFD method is suitable to deal with these type of simulation challenges. Based on the CFD method, a neutronics and thermohydraulic coupling code FLUENT/PK for nuclear reactor safety analysis by coupling the commercial CFD code FLUENT with the point kinetics model (PKM) and the pin thermal model (PTM) is developed by University of Science and Technology of China (USTC). The coupled code is verified by comparing with a series of benchmarks on beam interruptions in a lead-bismuth-cooled and MOX-fuelled accelerator-driven system. The variations of transient power, fuel temperature and outlet coolant temperature all agree well with the benchmark results. The validation results show that the code can be used to simulate the transient accidents of critical and sub-critical lead/lead-bismuth cooled reactors. Then this coupling code is used to evaluate the safety performance of MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) at unprotected beam over-power (UBOP) accident, and M2LFR-1000 (Medium-size Modular Lead-cooled Fast Reactor) at the unprotected transient over-power (UTOP) and unprotected loss of flow (ULOF) accident. The transient power, the temperature of coolant and fuel and multi-dimensional flow phenomena in upper plenum and lower plenum are presented and discussed in this paper.


2018 ◽  
Vol 115 ◽  
pp. 377-386 ◽  
Author(s):  
Gilberto Espinosa-Paredes ◽  
Carlos G. Aguilar-Madera

2020 ◽  
pp. 247255522095838
Author(s):  
Maria Filipa Pinto ◽  
Francisco Figueiredo ◽  
Alexandra Silva ◽  
António R. Pombinho ◽  
Pedro José Barbosa Pereira ◽  
...  

The throughput level currently reached by automatic liquid handling and assay monitoring techniques is expected to facilitate the discovery of new modulators of enzyme activity. Judicious and dependable ways to interpret vast amounts of information are, however, required to effectively answer this challenge. Here, the 3-point method of kinetic analysis is proposed as a means to significantly increase the hit success rates and decrease the number of falsely identified compounds (false positives). In this post-Michaelis–Menten approach, each screened reaction is probed in three different occasions, none of which necessarily coincide with the initial period of constant velocity. Enzymology principles rather than subjective criteria are applied to identify unwanted outliers such as assay artifacts, and then to accurately distinguish true enzyme modulation effects from false positives. The exclusion and selection criteria are defined based on the 3-point reaction coordinates, whose relative positions along the time-courses may change from well to well or from plate to plate, if necessary. The robustness and efficiency of the new method is illustrated during a small drug repurposing screening of potential modulators of the deubiquinating activity of ataxin-3, a protein implicated in Machado–Joseph disease. Apparently, intractable Z factors are drastically enhanced after (1) eliminating spurious results, (2) improving the normalization method, and (3) increasing the assay resilience to systematic and random variability. Numerical simulations further demonstrate that the 3-point analysis is highly sensitive to specific, catalytic, and slow-onset modulation effects that are particularly difficult to detect by typical endpoint assays.


Sign in / Sign up

Export Citation Format

Share Document