scholarly journals Substructural Negations

2015 ◽  
Vol 12 (4) ◽  
Author(s):  
Takuro Onishi

We present substructural negations, a family of negations (or negative modalities) classified in terms of structural rules of an extended kind of sequent calculus, display calculus. In considering the whole picture, we emphasize the duality of negation. Two types of negative modality, impossibility and unnecessity, are discussed and "self-dual" negations like Classical, De Morgan, or Ockham negation are redefined as the fusions of two negative modalities. We also consider how to identify, using intuitionistic and dual intuitionistic negations, two accessibility relations associated with impossibility and unnecessity.

Author(s):  
Giulia Battilotti

The author discusses the problem of symmetry, namely of the orientation of the logical consequence. The author shows that the problem is surprisingly entangled with the problem of “being infinite”. The author presents a model based on quantum states and shows that it features satisfy the requirements of the symmetric mode of Bi-logic, a logic introduced in the '70s by the psychoanalyst I. Matte Blanco to describe the logic of the unconscious. The author discusess symmetry, in the model, to include correlations, in order to obtain a possible approach to displacement. In this setting, the author finds a possible reading of the structural rules of sequent calculus, whose role in computation, on one side, and in the representation of human reasoning, on the other, has been debated for a long time.


2011 ◽  
Vol 52 ◽  
Author(s):  
Romas Alonderis

A sequent calculus with Kripke semantics internalization for a propositional temporal logic with time gaps is introduced. All rules of the calculus are context-free andheight-preserving invertible. Structural rules are admissible. The calculus is cut free and is proved to be complete.  


10.29007/mwpp ◽  
2018 ◽  
Author(s):  
Giuseppe Greco ◽  
Alexander Kurz ◽  
Alessandra Palmigiano

We develop a family of display-style, cut-free sequent calculi for dynamic epistemic logics on both an intuitionistic and a classical base. Like the standard display calculi, these calculi are modular: just by modifying the structural rules according to Dosen’s principle, these calculi are generalizable both to different Dynamic Logics (Epistemic, Deontic, etc.) and to different propositional bases (Linear, Relevant, etc.). Moreover, the rules they feature agree with the standard relational semantics for dynamic epistemic logics.


2018 ◽  
Vol 29 (8) ◽  
pp. 1177-1216
Author(s):  
CHUCK LIANG

This article presents a unified logic that combines classical logic, intuitionistic logic and affine linear logic (restricting contraction but not weakening). We show that this unification can be achieved semantically, syntactically and in the computational interpretation of proofs. It extends our previous work in combining classical and intuitionistic logics. Compared to linear logic, classical fragments of proofs are better isolated from non-classical fragments. We define a phase semantics for this logic that naturally extends the Kripke semantics of intuitionistic logic. We present a sequent calculus with novel structural rules, which entail a more elaborate procedure for cut elimination. Computationally, this system allows affine-linear interpretations of proofs to be combined with classical interpretations, such as the λμ calculus. We show how cut elimination must respect the boundaries between classical and non-classical modes of proof that correspond to delimited control effects.


1995 ◽  
Vol 60 (3) ◽  
pp. 861-878 ◽  
Author(s):  
Giovanni Sambin

Pretopologies were introduced in [S], and there shown to give a complete semantics for a propositional sequent calculus BL, here called basic linear logic, as well as for its extensions by structural rules, ex falso quodlibet or double negation. Immediately after Logic Colloquium '88, a conversation with Per Martin-Löf helped me to see how the pretopology semantics should be extended to predicate logic; the result now is a simple and fully constructive completeness proof for first order BL and virtually all its extensions, including the usual, or structured, intuitionistic and classical logic. Such a proof clearly illustrates the fact that stronger set-theoretic principles and classical metalogic are necessary only when completeness is sought with respect to a special class of models, such as the usual two-valued models.To make the paper self-contained, I briefly review in §1 the definition of pretopologies; §2 deals with syntax and §3 with semantics. The completeness proof in §4, though similar in structure, is sensibly simpler than that in [S], and this is why it is given in detail. In §5 it is shown how little is needed to obtain completeness for extensions of BL in the same language. Finally, in §6 connections with proofs with respect to more traditional semantics are briefly investigated, and some open problems are put forward.


2002 ◽  
Vol 67 (1) ◽  
pp. 162-196 ◽  
Author(s):  
Jean-Baptiste Joinet ◽  
Harold Schellinx ◽  
Lorenzo Tortora De Falco

AbstractThe present report is a, somewhat lengthy, addendum to [4], where the elimination of cuts from derivations in sequent calculus for classical logic was studied ‘from the point of view of linear logic’. To that purpose a formulation of classical logic was used, that - as in linear logic - distinguishes between multiplicative and additive versions of the binary connectives.The main novelty here is the observation that this type-distinction is not essential: we can allow classical sequent derivations to use any combination of additive and multiplicative introduction rules for each of the connectives, and still have strong normalization and confluence of tq-reductions.We give a detailed description of the simulation of tq-reductions by means of reductions of the interpretation of any given classical proof as a proof net of PN2 (the system of second order proof nets for linear logic), in which moreover all connectives can be taken to be of one type, e.g., multiplicative.We finally observe that dynamically the different logical cuts, as determined by the four possible combinations of introduction rules, are independent: it is not possible to simulate them internally, i.e.. by only one specific combination, and structural rules.


1991 ◽  
Vol 56 (4) ◽  
pp. 1403-1451 ◽  
Author(s):  
V. Michele Abrusci

The linear logic introduced in [3] by J.-Y. Girard keeps one of the so-called structural rules of the sequent calculus: the exchange rule. In a one-sided sequent calculus this rule can be formulated asThe exchange rule allows one to disregard the order of the assumptions and the order of the conclusions of a proof, and this means, when the proof corresponds to a logically correct program, to disregard the order in which the inputs and the outputs occur in a program.In the linear logic introduced in [3], the exchange rule allows one to prove the commutativity of the multiplicative connectives, conjunction (⊗) and disjunction (⅋). Due to the presence of the exchange rule in linear logic, in the phase semantics for linear logic one starts with a commutative monoid. So, the usual linear logic may be called commutative linear logic.The aim of the investigations underlying this paper was to see, first, what happens when we remove the exchange rule from the sequent calculus for the linear propositional logic at all, and then, how to recover the strength of the exchange rule by means of exponential connectives (in the same way as by means of the exponential connectives ! and ? we recover the strength of the weakening and contraction rules).


2021 ◽  
Vol 22 (3) ◽  
pp. 1-41
Author(s):  
Laurent De Rudder ◽  
Alessandra Palmigiano

We prove an algebraic canonicity theorem for normal LE-logics of arbitrary signature, in a generalized setting in which the non-lattice connectives are interpreted as operations mapping tuples of elements of the given lattice to closed or open elements of its canonical extension. Interestingly, the syntactic shape of LE-inequalities which guarantees their canonicity in this generalized setting turns out to coincide with the syntactic shape of analytic inductive inequalities , which guarantees LE-inequalities to be equivalently captured by analytic structural rules of a proper display calculus. We show that this canonicity result connects and strengthens a number of recent canonicity results in two different areas: subordination algebras, and transfer results via Gödel-McKinsey-Tarski translations.


Sign in / Sign up

Export Citation Format

Share Document