scholarly journals A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification

2021 ◽  
Author(s):  
Y Sun ◽  
Bing Xue ◽  
Mengjie Zhang ◽  
GG Yen

© 2012 IEEE. Convolutional autoencoders (CAEs) have shown their remarkable performance in stacking to deep convolutional neural networks (CNNs) for classifying image data during the past several years. However, they are unable to construct the state-of-the-art CNNs due to their intrinsic architectures. In this regard, we propose a flexible CAE (FCAE) by eliminating the constraints on the numbers of convolutional layers and pooling layers from the traditional CAE. We also design an architecture discovery method by exploiting particle swarm optimization, which is capable of automatically searching for the optimal architectures of the proposed FCAE with much less computational resource and without any manual intervention. We test the proposed approach on four extensively used image classification data sets. Experimental results show that our proposed approach in this paper significantly outperforms the peer competitors including the state-of-the-art algorithms. © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2021 ◽  
Author(s):  
Y Sun ◽  
Bing Xue ◽  
Mengjie Zhang ◽  
GG Yen

© 2012 IEEE. Convolutional autoencoders (CAEs) have shown their remarkable performance in stacking to deep convolutional neural networks (CNNs) for classifying image data during the past several years. However, they are unable to construct the state-of-the-art CNNs due to their intrinsic architectures. In this regard, we propose a flexible CAE (FCAE) by eliminating the constraints on the numbers of convolutional layers and pooling layers from the traditional CAE. We also design an architecture discovery method by exploiting particle swarm optimization, which is capable of automatically searching for the optimal architectures of the proposed FCAE with much less computational resource and without any manual intervention. We test the proposed approach on four extensively used image classification data sets. Experimental results show that our proposed approach in this paper significantly outperforms the peer competitors including the state-of-the-art algorithms. © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2019 ◽  
Vol 8 (3) ◽  
pp. 108-122 ◽  
Author(s):  
Halima Salah ◽  
Mohamed Nemissi ◽  
Hamid Seridi ◽  
Herman Akdag

Setting a compact and accurate rule base constitutes the principal objective in designing fuzzy rule-based classifiers. In this regard, the authors propose a designing scheme based on the combination of the subtractive clustering (SC) and the particle swarm optimization (PSO). The main idea relies on the application of the SC on each class separately and with a different radius in order to generate regions that are more accurate, and to represent each region by a fuzzy rule. However, the number of rules is then affected by the radiuses, which are the main preset parameters of the SC. The PSO is therefore used to define the optimal radiuses. To get good compromise accuracy-compactness, the authors propose using a multi-objective function for the PSO. The performances of the proposed method are tested on well-known data sets and compared with several state-of-the-art methods.


Author(s):  
E. Parsopoulos Konstantinos ◽  
N. Vrahatis Michael

This chapter is devoted to particle swarm optimization (PSO), from early precursors to contemporary standard variants. The presentation begins with the main inspiration source behind its development, followed by early variants and discussion on their parameters. Severe deficiencies of early variants are also pointed out and their solutions are reported in a relative historical order, bringing the reader to contemporary developments, considered as the state-of-the-art PSO variants today.


Author(s):  
Francesca Pace ◽  
Alessandro Santilano ◽  
Alberto Godio

AbstractThis paper reviews the application of the algorithm particle swarm optimization (PSO) to perform stochastic inverse modeling of geophysical data. The main features of PSO are summarized, and the most important contributions in several geophysical fields are analyzed. The aim is to indicate the fundamental steps of the evolution of PSO methodologies that have been adopted to model the Earth’s subsurface and then to undertake a critical evaluation of their benefits and limitations. Original works have been selected from the existing geophysical literature to illustrate successful PSO applied to the interpretation of electromagnetic (magnetotelluric and time-domain) data, gravimetric and magnetic data, self-potential, direct current and seismic data. These case studies are critically described and compared. In addition, joint optimization of multiple geophysical data sets by means of multi-objective PSO is presented to highlight the advantage of using a single solver that deploys Pareto optimality to handle different data sets without conflicting solutions. Finally, we propose best practices for the implementation of a customized algorithm from scratch to perform stochastic inverse modeling of any kind of geophysical data sets for the benefit of PSO practitioners or inexperienced researchers.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
S. Sakinah S. Ahmad ◽  
Witold Pedrycz

The study is concerned with data and feature reduction in fuzzy modeling. As these reduction activities are advantageous to fuzzy models in terms of both the effectiveness of their construction and the interpretation of the resulting models, their realization deserves particular attention. The formation of a subset of meaningful features and a subset of essential instances is discussed in the context of fuzzy-rule-based models. In contrast to the existing studies, which are focused predominantly on feature selection (namely, a reduction of the input space), a position advocated here is that a reduction has to involve both data and features to become efficient to the design of fuzzy model. The reduction problem is combinatorial in its nature and, as such, calls for the use of advanced optimization techniques. In this study, we use a technique of particle swarm optimization (PSO) as an optimization vehicle of forming a subset of features and data (instances) to design a fuzzy model. Given the dimensionality of the problem (as the search space involves both features and instances), we discuss a cooperative version of the PSO along with a clustering mechanism of forming a partition of the overall search space. Finally, a series of numeric experiments using several machine learning data sets is presented.


Sign in / Sign up

Export Citation Format

Share Document