scholarly journals Data and Feature Reduction in Fuzzy Modeling through Particle Swarm Optimization

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
S. Sakinah S. Ahmad ◽  
Witold Pedrycz

The study is concerned with data and feature reduction in fuzzy modeling. As these reduction activities are advantageous to fuzzy models in terms of both the effectiveness of their construction and the interpretation of the resulting models, their realization deserves particular attention. The formation of a subset of meaningful features and a subset of essential instances is discussed in the context of fuzzy-rule-based models. In contrast to the existing studies, which are focused predominantly on feature selection (namely, a reduction of the input space), a position advocated here is that a reduction has to involve both data and features to become efficient to the design of fuzzy model. The reduction problem is combinatorial in its nature and, as such, calls for the use of advanced optimization techniques. In this study, we use a technique of particle swarm optimization (PSO) as an optimization vehicle of forming a subset of features and data (instances) to design a fuzzy model. Given the dimensionality of the problem (as the search space involves both features and instances), we discuss a cooperative version of the PSO along with a clustering mechanism of forming a partition of the overall search space. Finally, a series of numeric experiments using several machine learning data sets is presented.

2019 ◽  
Vol 8 (3) ◽  
pp. 108-122 ◽  
Author(s):  
Halima Salah ◽  
Mohamed Nemissi ◽  
Hamid Seridi ◽  
Herman Akdag

Setting a compact and accurate rule base constitutes the principal objective in designing fuzzy rule-based classifiers. In this regard, the authors propose a designing scheme based on the combination of the subtractive clustering (SC) and the particle swarm optimization (PSO). The main idea relies on the application of the SC on each class separately and with a different radius in order to generate regions that are more accurate, and to represent each region by a fuzzy rule. However, the number of rules is then affected by the radiuses, which are the main preset parameters of the SC. The PSO is therefore used to define the optimal radiuses. To get good compromise accuracy-compactness, the authors propose using a multi-objective function for the PSO. The performances of the proposed method are tested on well-known data sets and compared with several state-of-the-art methods.


2021 ◽  
Author(s):  
Muhammad Obaidullah

Network-on-Chip (NoC) has been proposed as an interconnection framework for connecting large number of cores for a System-on-Chip (SoC). Assuming a mesh-based NoC, we investigate application mapping and NoC configuration optimization using a hybrid optimization scheme. Our technique, Hybrid Discrete Particle Swarm Optimization (HDPSO), combines Tabu-search, communication volume based core swapping, and swarm intelligence. We employ a Tabu-list to discourage swarm particles to re-visit the explored search space and propose an alternative route towards the intended movement direction. In each iteration of swarm, a sub-swarm containing configuration solutions (sub-particles) searches for optimal configuration for the parent particle (mapping solution). Optimization goals include minimum average communication latency, power, area, credit loop latency, and maximum average link duty factor. The proposed technique is tested for well-known multimedia application core graphs and several large synthetic cores-graphs. It was found that on average our hybrid scheme generates high quality NoC mapping and configuration solutions when compared to some existing stochastic optimization techniques.


Author(s):  
Suriya Murugan ◽  
Sumithra M. G. ◽  
Logeswari Shanmugam

This chapter examines the exploratory data analytics that require statistical techniques on data sets which are in the form of object-attribute-time format and referred to as three-dimensional data sets. It is very difficult to cluster and hence a subspace clustering method is used. Existing algorithms like CATSeeker are not actionable and its 3D structure complicates the clustering process, hence they are inadequate to solve this clustering problem. To cluster these three-dimensional data sets, a new centroid-based concept is introduced in the proposed system called clustering using particle swarm optimization (CPSO). This CPSO framework can be applied to financial and stock domain datasets through the unique combination of (1) singular value decomposition (SVD), (2) particle swarm optimization (PSO), and (3) 3D frequent item set mining which results in efficient performance. CPSO framework prunes the entire search space to identify the significant subspaces and clusters the datasets based on optimal centroid value.


2021 ◽  
Author(s):  
Muhammad Obaidullah

Network-on-Chip (NoC) has been proposed as an interconnection framework for connecting large number of cores for a System-on-Chip (SoC). Assuming a mesh-based NoC, we investigate application mapping and NoC configuration optimization using a hybrid optimization scheme. Our technique, Hybrid Discrete Particle Swarm Optimization (HDPSO), combines Tabu-search, communication volume based core swapping, and swarm intelligence. We employ a Tabu-list to discourage swarm particles to re-visit the explored search space and propose an alternative route towards the intended movement direction. In each iteration of swarm, a sub-swarm containing configuration solutions (sub-particles) searches for optimal configuration for the parent particle (mapping solution). Optimization goals include minimum average communication latency, power, area, credit loop latency, and maximum average link duty factor. The proposed technique is tested for well-known multimedia application core graphs and several large synthetic cores-graphs. It was found that on average our hybrid scheme generates high quality NoC mapping and configuration solutions when compared to some existing stochastic optimization techniques.


2013 ◽  
Vol 315 ◽  
pp. 88-92 ◽  
Author(s):  
Jameel A.A. Mukred ◽  
Mohd Taufiq Muslim ◽  
Hazlina Selamat

Assembly sequence planning (ASP) plays an important role in the production planning and should be optimized to minimize production time and cost when large numbers of parts and sub-assemblies are involved in the assembly process. Although the ASP problem has been tackled via a variety of optimization techniques, these techniques are often inefficient when applied to larger-scale problems. In this study, an approach using particle swarm optimization (PSO) is proposed to tackle one of the ASP problems which are optimizing the assembly sequence time. PSO uses a number of agents (particles) that constitute a swarm moving around in the search space looking for the best solution. Each bird, called particle, learns from its own best position and the globally best position. Experimental results show that PSO algorithm can produce good results in optimizing the assembly time, has a powerful global searching ability and fast rate of convergence.


2018 ◽  
Vol 4 (10) ◽  
pp. 6
Author(s):  
Shivangi Bhargava ◽  
Dr. Shivnath Ghosh

News popularity is the maximum growth of attention given for particular news article. The popularity of online news depends on various factors such as the number of social media, the number of visitor comments, the number of Likes, etc. It is therefore necessary to build an automatic decision support system to predict the popularity of the news as it will help in business intelligence too. The work presented in this study aims to find the best model to predict the popularity of online news using machine learning methods. In this work, the result analysis is performed by applying Co-relation algorithm, particle swarm optimization and principal component analysis. For performance evaluation support vector machine, naïve bayes, k-nearest neighbor and neural network classifiers are used to classify the popular and unpopular data. From the experimental results, it is observed that support vector machine and naïve bayes outperforms better with co-relation algorithm as well as k-NN and neural network outperforms better with particle swarm optimization.


Author(s):  
Ravichander Janapati ◽  
Ch. Balaswamy ◽  
K. Soundararajan

Localization is the key research area in wireless sensor networks. Finding the exact position of the node is known as localization. Different algorithms have been proposed. Here we consider a cooperative localization algorithm with censoring schemes using Crammer Rao bound (CRB). This censoring scheme  can improve the positioning accuracy and reduces computation complexity, traffic and latency. Particle swarm optimization (PSO) is a population based search algorithm based on the swarm intelligence like social behavior of birds, bees or a school of fishes. To improve the algorithm efficiency and localization precision, this paper presents an objective function based on the normal distribution of ranging error and a method of obtaining the search space of particles. In this paper  Distributed localization of wireless sensor networksis proposed using PSO with best censoring technique using CRB. Proposed method shows better results in terms of position accuracy, latency and complexity.  


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1795
Author(s):  
Manuel Cedillo-Hernandez ◽  
Antonio Cedillo-Hernandez ◽  
Francisco J. Garcia-Ugalde

Robust digital image watermarking is an information security technique that has been widely used to solve several issues related mainly with copyright protection as well as ownership authentication. In general terms, robust watermarking conceals a small signal called a “watermark” in a host image in a form imperceptible to human vision. The efficiency of conventional robust watermarking based on frequency domain depend directly on the results of performance in terms of robustness and imperceptibility. According to the application scenario and the image dataset, it is common practice to adjust the key parameters used by robust watermarking methods in an experimental form; however, this manual adjustment may involve exhaustive tasks and at the same time be a drawback in practical scenarios. In recent years, several optimization techniques have been adopted by robust watermarking to allowing adjusting in an automatic form its key operation parameters, improving thus its performance. In this context, this paper proposes an improved robust watermarking algorithm in discrete Fourier transform via spread spectrum, optimizing the key operation parameters, particularly the amounts of bands and coefficients of frequency as well as the watermark strength factor using particle swarm optimization in conjunction with visual information fidelity and bit correct rate criteria. Experimental results obtained in this research show improved robustness against common signal processing and geometric distortions, preserving a high visual quality in color images. Performance comparison with conventional discrete Fourier transform proposal is provided, as well as with the current state-of-the-art of particle swarm optimization applied to image watermarking.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Ya-zhong Luo ◽  
Li-ni Zhou

A new preliminary trajectory design method for asteroid rendezvous mission using multiobjective optimization techniques is proposed. This method can overcome the disadvantages of the widely employed Pork-Chop method. The multiobjective integrated launch window and multi-impulse transfer trajectory design model is formulated, which employes minimum-fuel cost and minimum-time transfer as two objective functions. The multiobjective particle swarm optimization (MOPSO) is employed to locate the Pareto solution. The optimization results of two different asteroid mission designs show that the proposed approach can effectively and efficiently demonstrate the relations among the mission characteristic parameters such as launch time, transfer time, propellant cost, and number of maneuvers, which will provide very useful reference for practical asteroid mission design. Compared with the PCP method, the proposed approach is demonstrated to be able to provide much more easily used results, obtain better propellant-optimal solutions, and have much better efficiency. The MOPSO shows a very competitive performance with respect to the NSGA-II and the SPEA-II; besides a proposed boundary constraint optimization strategy is testified to be able to improve its performance.


Sign in / Sign up

Export Citation Format

Share Document