scholarly journals Last Glacial Maximum-Holocene Glacial and Depositional History From Sediment Cores at Coulman High Beneath the Ross Ice Shelf, Antarctica

2021 ◽  
Author(s):  
◽  
Sanne M Maas

<p>Sediment Cores collected from the shallow sub-sea floor beneath the Ross Ice Shelf at Coulman High have been analysed using sedimentological techniques to constrain the retreat history of the Last Glacial Maximum (LGM) ice sheet in the Ross Embayment, and to determine when the modern-day calving line location of the Ross Ice Shelf was established. A characteristic vertical succession of facies was identified in these cores, that can be linked to ice sheet and ice shelf extent in the Ross Embayment. The base of this succession consists of unconsolidated, clast rich muddy diamicts, and is interpreted to be deposited subglacially or in a grounding line proximal environment on account of a distinct provenance in the clast content which can only be attributed to subglacial transport from the Byrd Glacier 400 km to the south of the drill site. This is overlain by a mud with abundant clasts, similar in character to a granulated facies that has been documented previously in the Ross Sea, and is interpreted as being a characteristic grounding line lift-o facies in a sub-ice shelf setting. These glacial proximal facies pass upward into a mud, which comprises three distinctive units. i) Muds with sub-mm scale laminae resulting from traction currents occurring near the grounding line in a sub-ice shelf environment overlain by, ii) muds with sub-mm scale laminae and elevated biogenic content (diatoms and foraminifera) and sand/gravel clasts, interpreted as being deposited in open water conditions, passing up into a iii) bioturbated mud, interpreted as being deposited in sub-ice shelf environment, proximal to the calving line. The uppermost facies consists of a 20 cm thick diatom ooze with abundant clasts and pervasive bioturbation, indicative of a condensed section deposited during periodically open marine conditions. During post-LGM retreat of the ice sheet margin in western Ross Sea, and prior to the first open marine conditions at Coulman High, it is hypothesized that the grounding and calving line were in relative close proximity to each other. As the calving line became "pinned" in the Ross Island region, the grounding line likely continued its retreat toward its present day location. New corrected radiocarbon ages on the foraminifera shells in the interval of laminated muds with clasts, provide some of the first inorganic ages from the Ross Sea, and strengthen inferences from previous studies, that the first open marine conditions in the vicinity of Ross Island were 7,600 14C yr BP. While retreat of the calving line south of its present day position is implied during this period of mid-Holocene warmth prior to its re-advance, at present it is not possible to constrain the magnitude of retreat or attribute this to climate change rather than normal calving dynamics.</p>

2021 ◽  
Author(s):  
◽  
Sanne M Maas

<p>Sediment Cores collected from the shallow sub-sea floor beneath the Ross Ice Shelf at Coulman High have been analysed using sedimentological techniques to constrain the retreat history of the Last Glacial Maximum (LGM) ice sheet in the Ross Embayment, and to determine when the modern-day calving line location of the Ross Ice Shelf was established. A characteristic vertical succession of facies was identified in these cores, that can be linked to ice sheet and ice shelf extent in the Ross Embayment. The base of this succession consists of unconsolidated, clast rich muddy diamicts, and is interpreted to be deposited subglacially or in a grounding line proximal environment on account of a distinct provenance in the clast content which can only be attributed to subglacial transport from the Byrd Glacier 400 km to the south of the drill site. This is overlain by a mud with abundant clasts, similar in character to a granulated facies that has been documented previously in the Ross Sea, and is interpreted as being a characteristic grounding line lift-o facies in a sub-ice shelf setting. These glacial proximal facies pass upward into a mud, which comprises three distinctive units. i) Muds with sub-mm scale laminae resulting from traction currents occurring near the grounding line in a sub-ice shelf environment overlain by, ii) muds with sub-mm scale laminae and elevated biogenic content (diatoms and foraminifera) and sand/gravel clasts, interpreted as being deposited in open water conditions, passing up into a iii) bioturbated mud, interpreted as being deposited in sub-ice shelf environment, proximal to the calving line. The uppermost facies consists of a 20 cm thick diatom ooze with abundant clasts and pervasive bioturbation, indicative of a condensed section deposited during periodically open marine conditions. During post-LGM retreat of the ice sheet margin in western Ross Sea, and prior to the first open marine conditions at Coulman High, it is hypothesized that the grounding and calving line were in relative close proximity to each other. As the calving line became "pinned" in the Ross Island region, the grounding line likely continued its retreat toward its present day location. New corrected radiocarbon ages on the foraminifera shells in the interval of laminated muds with clasts, provide some of the first inorganic ages from the Ross Sea, and strengthen inferences from previous studies, that the first open marine conditions in the vicinity of Ross Island were 7,600 14C yr BP. While retreat of the calving line south of its present day position is implied during this period of mid-Holocene warmth prior to its re-advance, at present it is not possible to constrain the magnitude of retreat or attribute this to climate change rather than normal calving dynamics.</p>


2021 ◽  
Vol 40 (1) ◽  
pp. 15-35 ◽  
Author(s):  
Romana Melis ◽  
Lucilla Capotondi ◽  
Fiorenza Torricella ◽  
Patrizia Ferretti ◽  
Andrea Geniram ◽  
...  

Abstract. During the Late Pleistocene–Holocene, the Ross Sea Ice Shelf exhibited strong spatial variability in relation to the atmospheric and oceanographic climatic variations. Despite being thoroughly investigated, the timing of the ice sheet retreat from the outer continental shelf since the Last Glacial Maximum (LGM) still remains controversial, mainly due to a lack of sediment cores with a robust chronostratigraphy. For this reason, the recent recovery of sediments containing a continuous occurrence of calcareous foraminifera provides the important opportunity to create a reliable age model and document the early deglacial phase in particular. Here we present a multiproxy study from a sediment core collected at the Hallett Ridge (1800 m of depth), where significant occurrences of calcareous planktonic and benthic foraminifera allow us to document the first evidence of the deglaciation after the LGM at about 20.2 ka. Our results suggest that the co-occurrence of large Neogloboquadrina pachyderma tests and abundant juvenile forms reflects the beginning of open-water conditions and coverage of seasonal sea ice. Our multiproxy approach based on diatoms, silicoflagellates, carbon and oxygen stable isotopes on N. pachyderma, sediment texture, and geochemistry indicates that abrupt warming occurred at approximately 17.8 ka, followed by a period of increasing biological productivity. During the Holocene, the exclusive dominance of agglutinated benthic foraminifera suggests that dissolution was the main controlling factor on calcareous test accumulation and preservation. Diatoms and silicoflagellates show that ocean conditions were variable during the middle Holocene and the beginning of the Neoglacial period at around 4 ka. In the Neoglacial, an increase in sand content testifies to a strengthening of bottom-water currents, supported by an increase in the abundance of the tycopelagic fossil diatom Paralia sulcata transported from the coastal regions, while an increase in ice-rafted debris suggests more glacial transport by icebergs.


2019 ◽  
Vol 132 (1-2) ◽  
pp. 31-47 ◽  
Author(s):  
Andrew J. Christ ◽  
Paul R. Bierman

AbstractDuring the Last Glacial Maximum (LGM), a grounded ice sheet filled the Ross Sea Embayment in Antarctica and deposited glacial sediments on volcanic islands and peninsulas in McMurdo Sound and coastal regions of the Transantarctic Mountains. The flow geometry and retreat history of this ice are debated, with contrasting views yielding divergent implications for the interaction between and stability of the East and West Antarctic ice sheets during late Quaternary time. Here, we present terrestrial geomorphologic evidence and reconstruct former ice-marginal environments, ice sheet elevations, and ice-flow directions in McMurdo Sound. Fossil algae in ice-marginal sediments provide a coherent radiocarbon chronology of maximum ice extent and deglaciation. We integrate these data with marine records to reconstruct grounded ice dynamics in McMurdo Sound and the western Ross Sea. The combined data set suggests ice flow toward the Transantarctic Mountains in McMurdo Sound during peak glaciation, with thick, grounded ice at or near its maximum position between 19.6 and 12.3 ka. Persistent grounded ice in McMurdo Sound and across the western Ross Sea after Meltwater Pulse 1a (14.0–14.5 ka) suggests that this sector of Antarctica did not significantly contribute to this rapid sea-level rise event. Our data show no significant advance of locally derived ice from the Transantarctic Mountains into McMurdo Sound during the local LGM.


2014 ◽  
Vol 26 (6) ◽  
pp. 687-697 ◽  
Author(s):  
Kathy J. Licht ◽  
Andrea J. Hennessy ◽  
Bethany M. Welke

AbstractGlacial till samples collected from beneath the Bindschadler and Kamb ice streams have a distinct U-Pb detrital zircon signature that allows them to be identified in Ross Sea tills. These two sites contain a population of Cretaceous grains 100–110 Ma that have not been found in East Antarctic tills. Additionally, Bindschadler and Kamb ice streams have an abundance of Ordovician grains (450–475 Ma) and a cluster of ages 330–370 Ma, which are much less common in the remainder of the sample set. These tracers of a West Antarctic provenance are also found east of 180° longitude in eastern Ross Sea tills deposited during the last glacial maximum (LGM). Whillans Ice Stream (WIS), considered part of the West Antarctic Ice Sheet but partially originating in East Antarctica, lacks these distinctive signatures. Its U-Pb zircon age population is dominated by grains 500–550 Ma indicating derivation from Granite Harbour Intrusive rocks common along the Transantarctic Mountains, making it indistinguishable from East Antarctic tills. The U-Pb zircon age distribution found in WIS till is most similar to tills from the west-central Ross Sea. These data provide new specific targets for ice sheet models and can be applied to pre-LGM deposits in the Ross Sea.


2012 ◽  
Vol 77 (2) ◽  
pp. 273-280 ◽  
Author(s):  
Joanne S. Johnson ◽  
Jeremy D. Everest ◽  
Philip T. Leat ◽  
Nicholas R. Golledge ◽  
Dylan H. Rood ◽  
...  

Recent changes along the margins of the Antarctic Peninsula, such as the collapse of the Wilkins Ice Shelf, have highlighted the effects of climatic warming on the Antarctic Peninsula Ice Sheet (APIS). However, such changes must be viewed in a long-term (millennial-scale) context if we are to understand their significance for future stability of the Antarctic ice sheets. To address this, we present nine new cosmogenic 10Be exposure ages from sites on NW Alexander Island and Rothschild Island (adjacent to the Wilkins Ice Shelf) that provide constraints on the timing of thinning of the Alexander Island ice cap since the last glacial maximum. All but one of the 10Be ages are in the range 10.2–21.7 ka, showing a general trend of progressive ice-sheet thinning since at least 22 ka until 10 ka. The data also provide a minimum estimate (490 m) for ice-cap thickness on NW Alexander Island at the last glacial maximum. Cosmogenic 3He ages from a rare occurrence of mantle xenoliths on Rothschild Island yield variable ages up to 46 ka, probably reflecting exhumation by periglacial processes.


1996 ◽  
Vol 42 (142) ◽  
pp. 486-500 ◽  
Author(s):  
Thomas B. Kellogg ◽  
Terry Hughes ◽  
Davida E. Kellogg

AbstractWe present new interpretations of deglaciation in McMurdo Sound and the western Ross Sea, with observationally based reconstructions of interactions between East and West Antarctic ice at the last glacial maximum (LGM), 16000, 12000, 8000 and 4000 BP. At the LGM, East Antarctic ice from Mulock Glacier split; one branch turned westward south of Ross Island but the other branch rounded Ross Island before flowing southwest into McMurdo Sound. This flow regime, constrained by an ice saddle north of Ross Island, is consistent with the reconstruction of Stuiver and others (1981a). After the LGM, grounding-line retreat was most rapid in areas with greatest water depth, especially along the Victoria Land coast. By 12000 BP, the ice-now regime in McMurdo Sound changed to through-flowing Mulock Glacier ice, with lesser contributions from Koettlitz, Blue and Ferrar Glaciers, because the former ice saddle north of Ross Island was replaced by a dome. The modern flew regime was established ∼4000 BP. Ice derived from high elevations on the Polar Plateau but now stranded on the McMurdo Ice Shelf, and the pattern of the Transantarctic Mountains erratics support our reconstructions of Mulock Glacier ice rounding Minna Bluff but with all ice from Skelton Glacier ablating south of the bluff. They are inconsistent with Drewry’s (1979) LGM reconstruction that includes Skelton Glacier ice in the McMurdo-Sound through-flow. Drewry’s (1979) model closely approximates our results for 12000-4000 BP. Ice-sheet modeling holds promise for determining whether deglaciation proceeded by grounding-line retreat of an ice sheet that was largely stagnant, because it never approached equilibrium flowline profiles after the Ross Ice Shelf grounded, or of a dynamic ice sheet with flowline profiles kept low by active ice streams that extended northward from present-day outlet glaciers after the Ross Ice Shelf grounded.


Sign in / Sign up

Export Citation Format

Share Document