scholarly journals Kappa Opioid Receptor Agonists: New Targets In The Treatment Of Pain

2021 ◽  
Author(s):  
◽  
Nitin Kumar

<p>Background and Purpose: Pain, although necessary for survival, can become pathological affecting an estimated 1 in 5 adults globally. It is also the most common reason people seek medical attention. Mu opioid receptor (MOPr) agonists, such as morphine, are the gold standard treatment for pain. Although these drugs have excellent analgesic properties, adverse effects such as addiction, tolerance and respiratory depression make their use problematic. An estimated 10,000 New Zealanders are addicted to prescription opiates, highlighting the need for better drugs to treat pain. Kappa opioid receptor (KOPr) agonists have analgesic properties and, unlike MOPr agonists, are also anti-addictive. Unfortunately, adverse effects such as sedation and dysphoria, have limited their therapeutic potential. The discovery of KOPr agonists that have analgesic properties without inducing adverse effects can allow for better, more efficient treatments of pain. We are the first to report the analgesic potential of novel Salvinorin A (Sal A) analogues: Tetrahydropyran Salvinorin A (THP Sal A) and Mesyl Salvinorin B (Mesyl Sal B).  Experimental Approach and Compounds Tested: This study uses animal behavioural models to characterise the analgesic, anti-oedematous, sedative and hypothermic effects of a structurally new class of KOPr agonists including Sal A, THP Sal A and Mesyl Sal B. The known peripherally restricted KOPr agonist, ICI 204,448, was used to evaluate the peripherally mediated analgesic mechanisms of KOPr agonists. The tail-flick and intradermal formalin test were used to assess acute central and peripheral pain processes respectively. Sedative effects were monitored via rotarod performance test; thermoregulatory effects were also recorded.   Key Results: ICI 204,448 attenuated inflammatory pain at a dose of 1 mg/kg (P<0.05, 30 min) and 2 mg/kg (P<0.001, 30-35 min). Although it showed no centrally mediated analgesic effects, it was found to be sedative at a dose of 2 mg/kg (P<0.01, 15-60 min). Sal A (2 mg/kg) attenuated inflammatory pain (P<0.01, 25-35 min) at the same dose it was sedative (P<0.01, 2-15 min). Although it treated acute thermal pain at a non-sedative dose (1 mg/kg, P<0.001, 10-15 min), it has a short duration of action (˜15 min). THP Sal A attenuated both thermal and inflammatory pain. Unfortunately, it was also sedative at both 1 mg/kg (P<0.01, 15-45 min) and 2 mg/kg (P<0.001, 15-90 min). Mesyl Sal B significantly attenuated both central (1mg/kg, P<0.01, 30-60 min) and peripheral (2 mg/kg, P<0.01, 30 min) pain processes. Although Mesyl Sal B was found to have a weak analgesic effect in all pain assays, it was not sedative.  Conclusions and Implications: KOPr agonists attenuate acute nociceptive and inflammatory pain. Structural modification of Sal A at the C-2 position alters its analgesic effects in vivo. Substitution with a tetrahydropyran group greatly improves central analgesic effects; however, sedative effects were also observed. Although substitution with a mesylate group produced no sedative effects, it had reduced effects on central and peripheral pain processes. The lack of sedation by Mesyl Sal B makes it a good target for future research in pain. Its longer duration of action compared to Sal A suggests it has a better metabolic profile. The creation of more soluble KOPr compounds would allow for better dose-testing to evaluate therapeutic potential of KOPr analgesics.</p>

2021 ◽  
Author(s):  
◽  
Nitin Kumar

<p>Background and Purpose: Pain, although necessary for survival, can become pathological affecting an estimated 1 in 5 adults globally. It is also the most common reason people seek medical attention. Mu opioid receptor (MOPr) agonists, such as morphine, are the gold standard treatment for pain. Although these drugs have excellent analgesic properties, adverse effects such as addiction, tolerance and respiratory depression make their use problematic. An estimated 10,000 New Zealanders are addicted to prescription opiates, highlighting the need for better drugs to treat pain. Kappa opioid receptor (KOPr) agonists have analgesic properties and, unlike MOPr agonists, are also anti-addictive. Unfortunately, adverse effects such as sedation and dysphoria, have limited their therapeutic potential. The discovery of KOPr agonists that have analgesic properties without inducing adverse effects can allow for better, more efficient treatments of pain. We are the first to report the analgesic potential of novel Salvinorin A (Sal A) analogues: Tetrahydropyran Salvinorin A (THP Sal A) and Mesyl Salvinorin B (Mesyl Sal B).  Experimental Approach and Compounds Tested: This study uses animal behavioural models to characterise the analgesic, anti-oedematous, sedative and hypothermic effects of a structurally new class of KOPr agonists including Sal A, THP Sal A and Mesyl Sal B. The known peripherally restricted KOPr agonist, ICI 204,448, was used to evaluate the peripherally mediated analgesic mechanisms of KOPr agonists. The tail-flick and intradermal formalin test were used to assess acute central and peripheral pain processes respectively. Sedative effects were monitored via rotarod performance test; thermoregulatory effects were also recorded.   Key Results: ICI 204,448 attenuated inflammatory pain at a dose of 1 mg/kg (P<0.05, 30 min) and 2 mg/kg (P<0.001, 30-35 min). Although it showed no centrally mediated analgesic effects, it was found to be sedative at a dose of 2 mg/kg (P<0.01, 15-60 min). Sal A (2 mg/kg) attenuated inflammatory pain (P<0.01, 25-35 min) at the same dose it was sedative (P<0.01, 2-15 min). Although it treated acute thermal pain at a non-sedative dose (1 mg/kg, P<0.001, 10-15 min), it has a short duration of action (˜15 min). THP Sal A attenuated both thermal and inflammatory pain. Unfortunately, it was also sedative at both 1 mg/kg (P<0.01, 15-45 min) and 2 mg/kg (P<0.001, 15-90 min). Mesyl Sal B significantly attenuated both central (1mg/kg, P<0.01, 30-60 min) and peripheral (2 mg/kg, P<0.01, 30 min) pain processes. Although Mesyl Sal B was found to have a weak analgesic effect in all pain assays, it was not sedative.  Conclusions and Implications: KOPr agonists attenuate acute nociceptive and inflammatory pain. Structural modification of Sal A at the C-2 position alters its analgesic effects in vivo. Substitution with a tetrahydropyran group greatly improves central analgesic effects; however, sedative effects were also observed. Although substitution with a mesylate group produced no sedative effects, it had reduced effects on central and peripheral pain processes. The lack of sedation by Mesyl Sal B makes it a good target for future research in pain. Its longer duration of action compared to Sal A suggests it has a better metabolic profile. The creation of more soluble KOPr compounds would allow for better dose-testing to evaluate therapeutic potential of KOPr analgesics.</p>


Planta Medica ◽  
2015 ◽  
Vol 81 (05) ◽  
Author(s):  
PR Polepally ◽  
A Keasling ◽  
K White ◽  
E Vardy ◽  
BL Roth ◽  
...  

FEBS Journal ◽  
2006 ◽  
Vol 273 (9) ◽  
pp. 1966-1974 ◽  
Author(s):  
Brian E. Kane ◽  
Marcelo J. Nieto ◽  
Christopher R. McCurdy ◽  
David M. Ferguson

2017 ◽  
Author(s):  
Ryan Shenvi ◽  
Shun Hirasawa ◽  
Min Cho ◽  
Tarsis F. Brust ◽  
Jeremy J. Roach ◽  
...  

Salvinorin A (SalA) is a potent and selective agonist of the kappa-opioid receptor (KOR), but its instability has frustrated medicinal chemistry efforts. Treatment of SalA with weak bases like DBU leads to C8 epimerization with loss of receptor affinity and signaling potency. Here we show that replacement of C20 with H and replacement of O6 with CH2 stabilizes the SalA scaffold relative to its C8 epimer, so much so that epimerization is completely suppressed. This new compound, O6C-20-nor-SalA, retains high potency for agonism of KOR. <br>


Author(s):  
Sarah Page ◽  
Maria M Mavrikaki ◽  
Tania Lintz ◽  
Daniel Puttick ◽  
Edward Roberts ◽  
...  

Abstract Background New treatments for stress-related disorders including depression, anxiety, and substance use disorder are greatly needed. Kappa opioid receptors are expressed in the central nervous system, including areas implicated in analgesia and affective state. Although kappa opioid receptor agonists share the antinociceptive effects of mu opioid receptor agonists, they also tend to produce negative affective states. In contrast, selective kappa opioid receptor antagonists have antidepressant- and anxiolytic-like effects, stimulating interest in their therapeutic potential. The prototypical kappa opioid receptor antagonists (e.g., norBNI, JDTic) have an exceptionally long duration of action that complicates their use in humans, particularly in tests to establish safety. This study was designed to test dose- and time-course effects of novel kappa opioid receptor antagonists with the goal of identifying short-acting lead compounds for future medication development. Methods We screened 2 novel, highly selective kappa opioid receptor antagonists (CYM-52220 and CYM-52288) with oral efficacy in the warm water tail flick assay in rats to determine initial dose and time course effects. For comparison, we tested existing kappa opioid receptor antagonists JDTic and LY-2456302 (also known as CERC-501 or JNJ-67953964). Results In the tail flick assay, the rank order of duration of action for the antagonists was LY-2456302 < CYM-52288 < CYM-52220 << JDTic. Furthermore, LY-2456302 blocked the depressive (anhedonia-producing) effects of the kappa opioid receptor agonist U50,488 in the intracranial self-stimulation paradigm, albeit at a higher dose than that needed for analgesic blockade in the tail flick assay. Conclusions These results suggest that structurally diverse kappa opioid receptor antagonists can have short-acting effects and that LY-2456302 reduces anhedonia as measured in the intracranial self-stimulation test.


2005 ◽  
Vol 16 (8) ◽  
pp. 627-633 ◽  
Author(s):  
William E. Fantegrossi ◽  
Kelly M. Kugle ◽  
Leander J. Valdes ◽  
Masato Koreeda ◽  
James H. Woods

2010 ◽  
Vol 1 (1) ◽  
pp. 24-33 ◽  
Author(s):  
K.K. Lemberg ◽  
T.E. Heiskanen ◽  
M. Neuvonen ◽  
V.K. Kontinen ◽  
P.J. Neuvonen ◽  
...  

AbstractOxycodone is a strong opioid and it is increasingly used in the management of acute and chronic pain. The pharmacodynamic effects of oxycodone are mainly mediated by the μ-opioid receptor. However, its affinity for the μ-opioid receptor is significantly lower compared with that of morphine and it has been suggested that active metabolites may play a role in oxycodone analgesia. Oxycodone is mainly metabolized by hepatic cytochrome (CYP) enzymes 2D6 and 3A4. Oxycodone is metabolized to oxymorphone, a potent μ-opioid receptor agonist by CYP2D6. However, CYP3A4 is quantitatively a more important metabolic pathway. Chronic pain patients often use multiple medications. Therefore it is important to understand how blocking or inducing these metabolic pathways may affect oxycodone induced analgesia. The aim of this study was to find out whether blocking CYP2D6 would decrease oxycodone induced analgesia in chronic pain patients.The effects of the antidepressant paroxetine, a potent inhibitor of CYP2D6, on the analgesic effects and pharmacokinetics of oral oxycodone were studied in 20 chronic pain patients using a randomized, double-blind, placebo-controlled cross-over study design. Pain intensity and rescue analgesics were recorded daily, and the pharmacokinetics and pharmacodynamics of oxycodone were studied on the 7th day of concomitant paroxetine (20 mg/day) or placebo administration. The patients were genotyped for CYP2D6, 3A4, 3A5 and ABCB1.Paroxetine had significant effects on the metabolism of oxycodone but it had no statistically significant effect on oxycodone analgesia or use of morphine for rescue analgesia. Paroxetine increased the dose-adjusted mean AUC0–12h of oxycodone by 19% (−23 to 113%; P = 0.003), and that of noroxycodone by 100% (5–280%; P < 0.0001) but decreased the AUC0–12 h of oxymorphone by 67% (−100 to −22%; P < 0.0001) and that of noroxymorphone by 68% (−100 to −16%; P < 0.0001).Adverse effects were also recorded in a pain diary for both 7-day periods (placebo/paroxetine). The most common adverse effects were drowsiness and nausea/vomiting. One patient out of four reported dizziness and headache during paroxetine co-administration, whereas no patient reported these during placebo administration (P = 0.0471) indicating that these adverse effects were due to paroxetine.No statistically significant associations of the CYP2D6 or CYP3A4/5 genotype of the patients and the pharmacokinetics of oxycodone or its metabolites, extent of paroxetine–oxycodone interaction, or analgesic effects were observed probably due to the limited number of patients studied.The results of this study strongly suggest that CYP2D6 inhibition does not significantly change oxycodone analgesia in chronic pain patients and that the analgesic activity of oxycodone is mainly due to the parent compound and that metabolites, e.g. oxymorphone, play an insignificant role. The clinical implication of these results is that induction of the metabolism of oxycodone may lead to inadequate analgesia while increased drug effects can be expected after addition of potent CYP3A4/5 inhibitors particularly if combined with CYP2D6 inhibitors or when administered to poor metabolizers of CYP2D6.


2021 ◽  
Author(s):  
◽  
Kelly Paton

<p>Chronic pain causes patients to endure prolonged suffering and discomfort, often having profound effects on quality of life. In New Zealand, one in five people currently suffer from chronic pain. To treat chronic pain, patients are typically prescribed drugs that activate the mu opioid receptor (MOPr), such as morphine, codeine and oxycodone. In recent years in the United States of America, there has been a rapid increase in the use of prescription and non-prescription opioid drugs, with opioid overdoses now the leading cause of accidental death. In New Zealand, daily doses of prescription opioids quadrupled in the ten year period from 2001-2011. Clearly, there is a need for the development of more effective and safe medications. This thesis evaluated two classes of non-addictive compounds: bioactive lipids and kappa opioid receptor (KOPr) agonists. N-docosahexaenoyl ethanolamine (DHEA) is an N-acyl ethanolamine class lipid that is structurally similar to the endocannabinoid anandamide. DHEA has previously been shown to have immune-modulatory effects in vitro, however, the in vivo effects have not previously been tested. Using the intraplantar 2% formaldehyde model in mice, DHEA reduced inflammatory and nociceptive pain via both intraperitoneal (i.p.) and local intraplantar (i.pl.) administration. DHEA significantly reduced formaldehyde-induced footpad oedema and reduced the infiltration of neutrophils into the inflamed tissue. The antinociceptive and anti-oedematous effects were not modulated by pre-treatment with either cannabinoid 1- or 2-type receptor antagonists. DHEA did not have any effect in a thermal nociceptive pain model and did not show any motor coordination impairment or changes in thermoregulation. In the search for non-addictive analgesics, KOPr agonists are a promising alternative. In contrast to MOPr agonists, KOPr agonists play a critical role in regulating the reward system. Salvinorin A (SalA) is a selective KOPr agonist that has antinociceptive and anti-inflammatory effects in vivo, with limited abuse potential. However, the short duration of action and aversive side effects limit the clinical usefulness. The present study aimed to investigate the antinociceptive effects of acute administration of novel analogues of SalA. In the dose-response tail withdrawal assay, SalA and the novel analogues 16-Ethynyl SalA and 16-Bromo SalA were more potent than the traditional KOPr agonist U50,488, and 16-Ethynyl SalA was more efficacious. 16-Ethynyl SalA and 16-Bromo SalA both had a longer duration of action in the warm water tail withdrawal assay and the hot plate test compared to SalA. In the intraplantar 2% formaldehyde test, SalA, 16-Ethynyl SalA and 16-Bromo SalA significantly reduced nociceptive pain and inflammatory pain, effects which were reversed by the KOPr antagonist nor-binaltorphimine. SalA, 16-Ethynyl SalA and 16-Bromo SalA reduced paw oedema and reduced the infiltration of neutrophils into the inflamed tissue. However, SalA, 16-Ethynyl SalA and 16-Bromo SalA produced motor incoordination effects. However, 16-Ethynyl SalA did not alter thermoregulation. The KOPr agonists were further assessed in a model of paclitaxel-induced neuropathic pain. In the acute dose-response experiment, 16-Ethynyl SalA was significantly more potent at reducing mechanical allodynia compared to morphine in both male and female mice. SalA and 16-Ethynyl SalA were more potent at reducing cold allodynia than morphine. In a chronic administration model over 22 days, for the treatment of cold and mechanical allodynia, all of the opioid treatments reduced pain, however, the traditional KOPr agonist U50,488, was the most potent, by reducing the male mechanical allodynia and cold allodynia in both sexes back to baseline levels. The ultrastructure of the sciatic nerves were studied, however, it was found that U50,488 did not reverse the effects of paclitaxel on myelin degeneration and mitochondrial damage. Overall, this study has identified DHEA as a modest treatment for inflammatory pain, with reduced side effects and a mechanism of action in contrast to other compounds with a similar structure. The novel KOPr agonists had significant effects in acute pain models with longer duration of action than the parent compound SalA. This is the first known study to investigate the effects of KOPr agonists in a paclitaxel-induced neuropathic pain model, showing that KOPr agonists are a potential therapeutic avenue for this debilitating condition.</p>


2020 ◽  
Author(s):  
Elyssa B. Margolis ◽  
Tanya L. Wallace ◽  
Lori Jean Van Orden ◽  
William J. Martin

AbstractActivation of the kappa opioid receptor (KOR) contributes to the aversive properties of stress, and modulates key neuronal circuits underlying many neurobehavioral disorders. KOR agonists directly inhibit ventral tegmental area (VTA) dopaminergic neurons, contributing to aversive responses [1,2]; therefore, selective KOR antagonists represent a novel therapeutic approach to restore circuit function. We used whole cell electrophysiology in acute rat midbrain slices to evaluate pharmacological properties of four novel KOR antagonists: BTRX-335140, BTRX-395750, PF-04455242, and JNJ-67953964. Each compound concentration-dependently reduced the outward current induced by the KOR selective agonist U-69,593. BTRX-335140 and BTRX-395750 fully blocked U-69,593 currents (IC50 = 1.3 ± 0.9 and 4.6 ± 0.9 nM, respectively). JNJ-67953964 showed an IC50 of 0.3 ± 1.3 nM. PF-04455242 (IC50 = 19.6 ± 16 nM) exhibited partial antagonist activity (∼60% maximal blockade). In 50% of neurons, 1 μM PF-04455242 generated an outward current independent of KOR activation. BTRX-335140 (10 nM) did not affect responses to saturating concentrations of the mu opioid receptor (MOR) agonist DAMGO or the delta opioid receptor (DOR) agonist DPDPE, while JNJ-67953964 (10 nM) partially blocked DAMGO responses and had no effect on DPDPE responses. Importantly, BTRX-335140 (10 nM) rapidly washed out with complete recovery of U-69,593 responses within 10 min. Collectively, we show electrophysiological evidence of key differences amongst KOR antagonists that could impact their therapeutic potential and have not been observed using recombinant systems. The results of this study demonstrate the value of characterizing compounds in native neuronal tissue and within disorder-relevant circuits implicated in neurobehavioral disorders.


Sign in / Sign up

Export Citation Format

Share Document