scholarly journals Impact of the local environmental variability on the patterns of coral recruitment on Indo-Pacific reefs

2021 ◽  
Author(s):  
◽  
Simona Tiziana Boschetti

<p>Coral reefs are threatened by a range of human activities at both local and global scales. The result of these impacts has resulted in a worldwide decline in the coral reef ecosystems. Corals are the principle reef builders and the maintenance of their populations is fundamental for healthy reef ecosystems. Local environmental factors are critically important in shaping coral populations, particularly at the post-settlement phase, when young coral colonies are most vulnerable to disturbances. In this context, understanding the environmental factors that drive coral recruitment and affect coral survivorship in the early life history stages is vital to effectively manage coral reefs.  In this thesis I began by investigating the effect of abiotic and biological factors on coral recruitment and juvenile coral life history stages using settlement panels deployed in the Wakatobi Marine National Park (SE Sulawesi, Indonesia). My objectives were to assess the spatio-temporal variability in coral recruitment rates and juvenile abundance. I used a modelling approach to identify the environmental factors that affected the distribution and abundance patterns of corals. Then, I focused on the main environmental factors, identified from previously published research, affecting coral recruitment. I conducted a caging experiment to assess the impact of fish predation on coral juveniles. Finally, I analysed the development of the benthic community and the interactions between corals and benthic organisms in the first two years of colonisation of artificial bare surfaces.  I found high spatial and temporal variability in recruitment rates over seven years of data, values were lower than on other Indo-Pacific reefs and ranged from 9.6 (±8.21 SE) to 317.19 (±12.76 SE) rec. m⁻²; while juvenile abundance ranged from 4.2 (±1.49 SE) to 33 (±6.36 SE) juv. m⁻². The local characteristics of the sites, such as coral cover, influenced the distribution of coral colonies in early life history stages; furthermore differences in coral density between the two life history stages (juvenile and recruits) were consistent over time. However, no single or combination of factors adequately explained abundance patterns for either recruits or juveniles. Fish predation did not appear to be the main cause of coral post-settlement mortality in the Wakatobi and it affected only 10.8% of the coral juveniles in the experiment. In contrast, 58.51% of the coral juveniles were found to be overgrown by algae and other invertebrates, however only turf and green encrusting algae affected coral survivorship. Coral colony abundance and the number of interactions with other benthic organisms, especially crustose coralline algae (CCA) and sponges, increased over time on panels and they were different between the front and back side of the panels, which was attributed to differences in light and predation regimes. Coral recruitment was higher on older benthic communities, although none of the known coral recruitment promoters, such as CCA, or competitors, such as turf algae, were correlated with coral abundance.  My results show that changes in coral populations between the recruit and juvenile stages are likely driven by small-scale processes. The site characteristics determine the final patterns, which vary over time following temporal fluctuations in environmental factors. The effect of the interactions between algae and sponges with coral recruits and their influence on juvenile survivorship suggests these organisms having a role in coral recruitment success and highlight their importance as a focus for reef management. Furthermore, the use of long term studies allowed a better understanding of the high variability present in coral recruitment and the trends of the recruitment process, which are useful information for conservative purposes.</p>

2021 ◽  
Author(s):  
◽  
Simona Tiziana Boschetti

<p>Coral reefs are threatened by a range of human activities at both local and global scales. The result of these impacts has resulted in a worldwide decline in the coral reef ecosystems. Corals are the principle reef builders and the maintenance of their populations is fundamental for healthy reef ecosystems. Local environmental factors are critically important in shaping coral populations, particularly at the post-settlement phase, when young coral colonies are most vulnerable to disturbances. In this context, understanding the environmental factors that drive coral recruitment and affect coral survivorship in the early life history stages is vital to effectively manage coral reefs.  In this thesis I began by investigating the effect of abiotic and biological factors on coral recruitment and juvenile coral life history stages using settlement panels deployed in the Wakatobi Marine National Park (SE Sulawesi, Indonesia). My objectives were to assess the spatio-temporal variability in coral recruitment rates and juvenile abundance. I used a modelling approach to identify the environmental factors that affected the distribution and abundance patterns of corals. Then, I focused on the main environmental factors, identified from previously published research, affecting coral recruitment. I conducted a caging experiment to assess the impact of fish predation on coral juveniles. Finally, I analysed the development of the benthic community and the interactions between corals and benthic organisms in the first two years of colonisation of artificial bare surfaces.  I found high spatial and temporal variability in recruitment rates over seven years of data, values were lower than on other Indo-Pacific reefs and ranged from 9.6 (±8.21 SE) to 317.19 (±12.76 SE) rec. m⁻²; while juvenile abundance ranged from 4.2 (±1.49 SE) to 33 (±6.36 SE) juv. m⁻². The local characteristics of the sites, such as coral cover, influenced the distribution of coral colonies in early life history stages; furthermore differences in coral density between the two life history stages (juvenile and recruits) were consistent over time. However, no single or combination of factors adequately explained abundance patterns for either recruits or juveniles. Fish predation did not appear to be the main cause of coral post-settlement mortality in the Wakatobi and it affected only 10.8% of the coral juveniles in the experiment. In contrast, 58.51% of the coral juveniles were found to be overgrown by algae and other invertebrates, however only turf and green encrusting algae affected coral survivorship. Coral colony abundance and the number of interactions with other benthic organisms, especially crustose coralline algae (CCA) and sponges, increased over time on panels and they were different between the front and back side of the panels, which was attributed to differences in light and predation regimes. Coral recruitment was higher on older benthic communities, although none of the known coral recruitment promoters, such as CCA, or competitors, such as turf algae, were correlated with coral abundance.  My results show that changes in coral populations between the recruit and juvenile stages are likely driven by small-scale processes. The site characteristics determine the final patterns, which vary over time following temporal fluctuations in environmental factors. The effect of the interactions between algae and sponges with coral recruits and their influence on juvenile survivorship suggests these organisms having a role in coral recruitment success and highlight their importance as a focus for reef management. Furthermore, the use of long term studies allowed a better understanding of the high variability present in coral recruitment and the trends of the recruitment process, which are useful information for conservative purposes.</p>


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Rebecca Albright

Ocean acidification (OA) is a relatively young yet rapidly developing scientific field. Assessing the potential response(s) of marine organisms to projected near-future OA scenarios has been at the forefront of scientific research, with a focus on ecosystems (e.g., coral reefs) and processes (e.g., calcification) that are deemed particularly vulnerable. Recently, a heightened emphasis has been placed on evaluating early life history stages as these stages are generally perceived to be more sensitive to environmental change. The number of acidification-related studies focused on early life stages has risen dramatically over the last several years. While early life history stages of corals have been understudied compared to other marine invertebrate taxa (e.g., echinoderms, mollusks), numerous studies exist to contribute to our status of knowledge regarding the potential impacts of OA on coral recruitment dynamics. To synthesize this information, the present paper reviews the primary literature on the effects of acidification on sexual reproduction and early stages of corals, incorporating lessons learned from more thoroughly studied taxa to both assess our current understanding of the potential impacts of OA on coral recruitment and to inform and guide future research in this area.


1991 ◽  
Vol 48 (10) ◽  
pp. 1820-1828 ◽  
Author(s):  
Pierre Pepin ◽  
Ransom A. Myers

Recruitment variability is commonly associated with fluctuations in abundance of marine fish populations. Previous studies have focussed on stock-specific correlative or mechanistic models or on comparisons of recruitment variations of several stocks or species. The purpose of this study is to determine whether recruitment variability of commercial marine fish populations is associated with either size or the duration of early life history stages. The analysis was performed with data from 86 stocks representing 21 species of commercial marine fish. Univariate analysis shows that neither egg size nor the length at hatch is significantly correlated with recruitment variability. The change in length during the larval phase, which is representative of the duration of the stage, is significantly positively correlated with recruitment variability. Multivariate analysis shows that recruitment variability increases with increasing length at metamorphosis but that recruitment variability is poorly associated with length at hatch. The degree of serial correlation is related to the relative duration of egg and larval stages. The results clearly indicate that recruitment variability is linked to characteristics of early life history stages.


Author(s):  
Petr Blabolil ◽  
Martin Čech ◽  
Tomáš Jůza ◽  
Jiří Peterka

Year to year fluctuations in 0+ fish cohort strength are a common phenomenon. Many factors can affect cohort strength during the fish's early life period. In this study, development of a 0+ pikeperch Sander lucioperca cohort in the pelagic zone was studied by trawling for 50 days from first larvae hatching, in two consecutive years. In 2007, an abundant S. lucioperca cohort collapsed suddenly soon after hatching. After the incident, slow-growing S. lucioperca prevailed in the catch. In 2008, the catch gradually increased during the whole study period because of prolonged hatching. Environmental factors differed mainly in a slower temperature increase, higher water level and higher zooplankton abundance in 2008 compared to 2007. Our study revealed that a strong 0+ S. lucioperca cohort at the time of hatching might not result in a strong S. lucioperca cohort in general.


2003 ◽  
Vol 111 (13) ◽  
pp. 1601-1607 ◽  
Author(s):  
Ruth H Milston ◽  
Martin S Fitzpatrick ◽  
Anthony T Vella ◽  
Shaun Clements ◽  
Deke Gundersen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document