geothermal systems
Recently Published Documents


TOTAL DOCUMENTS

1159
(FIVE YEARS 386)

H-INDEX

53
(FIVE YEARS 10)

Geothermics ◽  
2022 ◽  
Vol 100 ◽  
pp. 102318
Author(s):  
Koenraad F. Beckers ◽  
Nicolás Rangel-Jurado ◽  
Harish Chandrasekar ◽  
Adam J. Hawkins ◽  
Patrick M. Fulton ◽  
...  

2022 ◽  
Vol 318 ◽  
pp. 125832
Author(s):  
Ludovico Mascarin ◽  
Enrico Garbin ◽  
Eloisa Di Sipio ◽  
Giorgia Dalla Santa ◽  
David Bertermann ◽  
...  

2022 ◽  
Author(s):  
Chengjun Feng ◽  
Guangliang Gao ◽  
Shihuai Zhang ◽  
Dongsheng Sun ◽  
Siyu Zhu ◽  
...  

Abstract. The Tangshan region is one of the most seismically active areas in the North China, and the 1976 M 7.8 earthquake occurred on July 28th near the Tangshan fault zone. The Matouying Enhanced Geothermal Systems (EGS) field is located ~90 km away from Tangshan City. Since the late 2020, preliminary hydraulic stimulation tests have been conducted at depths of ~3965–4000 m. Fluid injection into geothermal reservoir facilitates heat exchanger system. However, fluid injection may also induce earthquakes. In anticipation of the EGS operation at the Matouying uplift, it is essential to assess how the fault slip potential of the nearby active and quiescent faults will change in the presence of fluid injection. In this study, we first characterize the ambient stress field in the Tangshan region by performing stress tensor inversions using 98 focal mechanism data (ML ≥ 2.5). Then, we estimate the principal stress magnitudes near the Matouying EGS field by analyzing in situ stress measurements at shallow depths (~600–1000 m). According to these data, we perform a quantitative risk assessment using the Mohr-Coulomb framework in order to evaluate how the main active faults might respond to hypothetical injected-related pore pressure increases due to the upcoming EGS production. Our results mainly show that most earthquakes in the Tangshan seismic region have occurred on the faults that have relatively high fault slip potential in the present ambient stress field. At well distances of less than 15 km, the probabilistic fault slip potential on most of the boundary faults increase with continuing fluid injection over time, especially on these faults with well distances of ~6–10 km. The probabilistic fault slip potential increases linearly with the fluid injection rate. However, the FSP values decrease exponentially with increased unit permeability. The case study of the Matouying EGS field has important implications for the deep geothermal exploitation in China, especially for Gonghe EGS (in Qinghai province) and Xiong’an New Area (in Hebei province) geothermal reservoirs that are close to the Quaternary active faults. Ongoing injection operations in the regions should be conducted with these understandings in mind.


Geothermics ◽  
2022 ◽  
Vol 98 ◽  
pp. 102272
Author(s):  
Rafael de Paula Cosmo ◽  
Fabio de Assis Ressel Pereira ◽  
Edson José Soares ◽  
Emmanoel Guasti Ferreira

2022 ◽  
pp. 329-386
Author(s):  
Huiming Yin ◽  
Mehdi Zadshir ◽  
Frank Pao
Keyword(s):  

Author(s):  
Adam E. Malek ◽  
Benjamin M. Adams ◽  
Edoardo Rossi ◽  
Hans O. Schiegg ◽  
Martin O. Saar

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 33
Author(s):  
Jeff D. Pepin ◽  
Andrew J. Robertson ◽  
Shari A. Kelley

Freshwater scarcity has raised concerns about the long-term availability of the water supplies within the transboundary Mesilla (United States)/Conejos-Médanos (Mexico) Basin in Texas, New Mexico, and Chihuahua. Analysis of legacy temperature data and groundwater flux estimates indicates that the region’s known geothermal systems may contribute more than 45,000 tons of dissolved solids per year to the shallow aquifer system, with around 8500 tons of dissolved solids being delivered from localized groundwater upflow zones within those geothermal systems. If this salinity flux is steady and eventually flows into the Rio Grande, it could account for 22% of the typical average annual cumulative Rio Grande salinity that leaves the basin each year—this salinity proportion could be much greater in times of low streamflow. Regional water level mapping indicates upwelling brackish waters flow towards the Rio Grande and the southern part of the Mesilla portion of the basin with some water intercepted by wells in Las Cruces and northern Chihuahua. Upwelling waters ascend from depths greater than 1 km with focused flow along fault zones, uplifted bedrock, and/or fractured igneous intrusions. Overall, this work demonstrates the utility of using heat as a groundwater tracer to identify salinity sources and further informs stakeholders on the presence of several brackish upflow zones that could notably degrade the quality of international water supplies in this developed drought-stricken region.


Author(s):  
Christopher S. Brown ◽  
Nigel J. Cassidy ◽  
Stuart S. Egan ◽  
Dan Griffiths

Deep hot sedimentary aquifers (HSAs) are targeted for geothermal exploitation in the Cheshire Basin, UK. In this study, a single extraction well targeting the Collyhurst Sandstone Formation was modelled on MATLAB coupling heat and fluid flux. The Collyhurst Sandstone Formation in the Crewe area of the Cheshire Basin is expected to be found at a depth of 2.8 to 3.5 km, and was chosen as an area for geothermal exploration due to the high demand for energy.Model results suggest that low-enthalpy, deep geothermal systems with thick HSAs are affected by both geological and engineering parameters. The results of this study highlight that the thermal gradient, hydraulic conductivity, production rate, length and position of the well screen are the key parameters capable of affecting the success and viability of any single well scheme. Poor planning during exploration and development can hinder the productivity of any single well scheme and these parameters must be considered to fully understand the risk. Engineering parameters, such as the length of the well screen, can be used during well planning to mitigate geological risks in the aquifer, whilst the results presented can also be used as a guide for energy potential under varying conditions.


2021 ◽  
Vol 95 (6) ◽  
pp. 1882-1891
Author(s):  
Yanlong KONG ◽  
Sheng PAN ◽  
Yaqian REN ◽  
Weizun ZHANG ◽  
Ke WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document