scholarly journals Investigating the evolvability of 'Escherichia coli nfsA' via simultaneous site-directed mutagenesis

2021 ◽  
Author(s):  
◽  
Kelsi Hall

<p>Bacterial nitroreductases are flavoenzymes able to catalyse the reduction of nitroaromatic compounds. The research presented in this thesis focused on NfsA_Ec, a nitroreductase from E. coli. NfsA_Ec is a promiscuous enzyme that can reduce a wide range of nitroaromatic antibiotics and prodrugs. This research sought to use NfsA_Ec as a model to improve our understanding of directed evolution, and also to identify NfsA_Ec variants exhibiting improved activation with a range of nil-bystander prodrugs for use in a targeted cell ablation system in zebrafish.  There is a substantial gap between the levels of enzyme activity that nature can achieve and those that scientists can evolve in the lab. This suggests that conventional directed evolution techniques involving incremental improvements in enzyme activity may frequently fail to ascend even local fitness maxima. We sought to contrast such approaches with simultaneous site-directed mutagenesis, employing a library of 252 million unique nfsA variants. To determine whether two superior NfsA_Ec variants recovered from this library could have been identified using a conventional stepwise approach we generated all possible intermediates of these two enzyme variants and recreated the most logical evolutionary trajectory for each enzyme variant. This revealed that a stepwise mutagenesis approach could indeed have yielded both of these variants, but also that very few evolutionary trajectories were accessible due to complex epistatic interactions between substitutions in these enzymes. Moreover, many conventional stepwise mutagenesis approaches such as iterative saturation mutagenesis would have failed to identify key substitutions in these variants. We also investigated the “black-box” effect of directed evolution, using NfsA_Ec and a panel of nitroaromatic compounds to model the off-target effects an evolved enzyme can have within an existing metabolic network. We found that selection for improved niclosamide and chloramphenicol detoxification also improved activity with some structurally distinct prodrugs, but not others. Using a dual positive-negative selection, we recovered NfsA_Ec variants that were more specialised for their primary activities, however this came at a cost in terms of overall activity levels.  The simultaneous site-directed nfsA_Ec mutagenesis library also had practical applications, enabling recovery of NfsA_Ec variants for targeted cell ablation in zebrafish models. These models involve the selective ablation of nitroreductase expressing cells without harming adjacent cells, to mimic a degenerative disease. Several NfsA_Ec variants were identified which were highly active with the nil-bystander prodrugs metronidazole, tinidazole, RB6145 and misonidazole when expressed in E. coli. However, these NfsA_Ec variants had inconsistent activities in our eukaryotic cell model (HEK-293). To expand the utility of the core ablation system, we sought to identify pairs of nitroreductases with non-overlapping prodrug specificities, suitable for use in a multiplex cell ablation system. Using a dual positive-negative selection, we recovered several NfsA_Ec variants that exhibited preferential nitrofurazone activation over metronidazole. Our lead variants for both applications are currently being trialed in zebrafish for their utility in generating degenerative disease models.</p>

2021 ◽  
Author(s):  
◽  
Kelsi Hall

<p>Bacterial nitroreductases are flavoenzymes able to catalyse the reduction of nitroaromatic compounds. The research presented in this thesis focused on NfsA_Ec, a nitroreductase from E. coli. NfsA_Ec is a promiscuous enzyme that can reduce a wide range of nitroaromatic antibiotics and prodrugs. This research sought to use NfsA_Ec as a model to improve our understanding of directed evolution, and also to identify NfsA_Ec variants exhibiting improved activation with a range of nil-bystander prodrugs for use in a targeted cell ablation system in zebrafish.  There is a substantial gap between the levels of enzyme activity that nature can achieve and those that scientists can evolve in the lab. This suggests that conventional directed evolution techniques involving incremental improvements in enzyme activity may frequently fail to ascend even local fitness maxima. We sought to contrast such approaches with simultaneous site-directed mutagenesis, employing a library of 252 million unique nfsA variants. To determine whether two superior NfsA_Ec variants recovered from this library could have been identified using a conventional stepwise approach we generated all possible intermediates of these two enzyme variants and recreated the most logical evolutionary trajectory for each enzyme variant. This revealed that a stepwise mutagenesis approach could indeed have yielded both of these variants, but also that very few evolutionary trajectories were accessible due to complex epistatic interactions between substitutions in these enzymes. Moreover, many conventional stepwise mutagenesis approaches such as iterative saturation mutagenesis would have failed to identify key substitutions in these variants. We also investigated the “black-box” effect of directed evolution, using NfsA_Ec and a panel of nitroaromatic compounds to model the off-target effects an evolved enzyme can have within an existing metabolic network. We found that selection for improved niclosamide and chloramphenicol detoxification also improved activity with some structurally distinct prodrugs, but not others. Using a dual positive-negative selection, we recovered NfsA_Ec variants that were more specialised for their primary activities, however this came at a cost in terms of overall activity levels.  The simultaneous site-directed nfsA_Ec mutagenesis library also had practical applications, enabling recovery of NfsA_Ec variants for targeted cell ablation in zebrafish models. These models involve the selective ablation of nitroreductase expressing cells without harming adjacent cells, to mimic a degenerative disease. Several NfsA_Ec variants were identified which were highly active with the nil-bystander prodrugs metronidazole, tinidazole, RB6145 and misonidazole when expressed in E. coli. However, these NfsA_Ec variants had inconsistent activities in our eukaryotic cell model (HEK-293). To expand the utility of the core ablation system, we sought to identify pairs of nitroreductases with non-overlapping prodrug specificities, suitable for use in a multiplex cell ablation system. Using a dual positive-negative selection, we recovered several NfsA_Ec variants that exhibited preferential nitrofurazone activation over metronidazole. Our lead variants for both applications are currently being trialed in zebrafish for their utility in generating degenerative disease models.</p>


1994 ◽  
Vol 180 (6) ◽  
pp. 2147-2153 ◽  
Author(s):  
M Pizza ◽  
M R Fontana ◽  
M M Giuliani ◽  
M Domenighini ◽  
C Magagnoli ◽  
...  

Escherichia coli enterotoxin (LT) and the homologous cholera toxin (CT) are A-B toxins that cause travelers' diarrhea and cholera, respectively. So far, experimental live and killed vaccines against these diseases have been developed using only the nontoxic B portion of these toxins. The enzymatically active A subunit has not been used because it is responsible for the toxicity and it is reported to induce a negligible titer of toxin neutralizing antibodies. We used site-directed mutagenesis to inactivate the ADP-ribosyltransferase activity of the A subunit and obtained nontoxic derivatives of LT that elicited a good titer of neutralizing antibodies recognizing the A subunit. These LT mutants and equivalent mutants of CT may be used to improve live and killed vaccines against cholera and enterotoxinogenic E. coli.


FEBS Letters ◽  
1988 ◽  
Vol 232 (1) ◽  
pp. 111-114 ◽  
Author(s):  
Derek Parsonage ◽  
Susan Wilke-Mounts ◽  
Alan E. Senior

2021 ◽  
Author(s):  
◽  
Madeleine Huber

Operons wurden zuerst im Jahre 1961 beschrieben. Bis heute ist bekannt, dass die prokaryotischen Domänen Bacteria und Archaea Gene sowohl in monocistronischen als auch in bi- oder polycistronischen Transkripten exprimieren können. Häufig überlappen Gene sogar in ihren Sequenzen. Diese überlappenden Genpaare stehen nicht in Korrelation mit der Kompaktheit ihres Genoms. Das führt zu der Annahme, dass eine Art der Regulation vorliegt, welche weitere Proteine oder Gene nicht benötigt. Diese könnte eine gekoppelte Translation sein. Das bedeutet die Translation des stromabwärts-liegenden Gens ist abhängig von der Translation eines stromaufwärts-liegenden Gens. Diese Abhängigkeit kann zum Beispiel durch lang reichende Sekundärstrukturen entstehen, bei welchen Ribosomenbindestellen (RBS) des stromabwärts-liegenden Gens blockiert sind. Die de novo-Initiation am stromabwärts-liegenden Gen kann nur stattfinden, wenn das erste Gen translatiert wird und dabei die Sekundärstruktur an der RBS aufgeschmolzen wird. Für Genpaare in E. coli ist dieser Mechanismus gut untersucht. Ein anderes Beispiel für die Translationskopplung ist die Termination-Reinitiation, bei welcher ein Ribosom das erste Gen translatiert bis zum Stop-Codon, dort terminiert und direkt am stromabwärts-liegenden Start-Codon reinitiiert. Der Mechanismus via Termination-Reinitiation ist bis jetzt nur für eukaryontische Viren beschrieben worden. Im Gegensatz zu einer Kopplung über Sekundärstrukturen kommt es bei der Termination-Reinitiation am stromabwärts-liegenden Gen nicht zu einer de novo-Initiation sondern eine Reinitiation des Ribosoms findet statt. Diese Arbeit analysiert jene Art der Translationskopplung an Genen polycistronischer mRNAs in jeweils einem Modellorganismus als Vertreter der Archaea (Haloferax volcanii) und Bacteria (Escherichia coli). Hierfür wurden Reportergenvektoren erstellt, welche die überlappenden Genpaare an Reportergene fusionierten. Für diese Reportergene ist es möglich die Transkriptmenge zu quantifizieren sowie für die exprimierten Proteine Enzymassays durchgeführt werden können. Aus beiden Werten können Translationseffizienzen berechnet werden indem jeweils die Enzymaktivität pro Transkriptmenge ermittelt wird. Durch ein prämatures Stop-Codon in diesen Konstrukten ist es möglich zu unterscheiden ob es für die Translation des zweiten Gens essentiell ist, dass das Ribosom den Überlapp erreicht. Hiermit konnte für neun Genpaare in H. volcanii und vier Genpaare in E. coli gezeigt werden, dass eine Art der Kopplung stattfindet bei der es sich um eine Termination-Reinitiation handelt. Des Weiteren wurde analysiert, welche Auswirkungen intragene Shine-Dalgarno Sequenzen bei dem Event der Translationskopplung besitzen. Durch die Mutation solcher Motive und dem Vergleich der Translationseffizienzen der Konstrukte, mit und ohne einer SD Sequenz, wird für alle analysierten Genpaare beider Modellorganismen gezeigt, dass die SD Sequenz einen Einfluss auf diese Art der Kopplung hat. Zwischen den Genpaaren ist dieser Einfluss jedoch stark variabel. Weiterhin wurde der maximale Abstand zwischen zwei bicistronischen Genen untersucht, für welchen Translationskopplung via Termination-Reinitiation noch stattfinden kann. Hierfür wird durch site-directed mutagenesis jeweils ein prämatures Stop-Codon im stromaufwärts-liegenden Gen eingebracht, welches den intergenen Abstand zwischen den Genen in den jeweiligen Konstrukten vergrößert. Der Vergleich aller Konstrukte eines Genpaars zeigt in beiden Modellorganismen, dass die Termination-Reinitiation vom intergenen Abstand abhängig ist und die Translationseffizienz des stromabwärts-liegenden Reporters bereits ab 15 Nukleotiden Abstand abnimmt. Eine weitere Fragestellung dieser Arbeit war es, den genauen Mechanismus der Termination-Reinitiation zu analysieren. Für Ribosomen gibt es an der mRNA nach der Termination der Translation zwei Möglichkeiten: Entweder als 70S Ribosom bestehen zu bleiben und ein weiteres Start-Codon auf der mRNA zu suchen oder in seine beiden Untereinheiten zu dissoziieren, während die 50S Untereinheit die mRNA verlässt und die 30S Untereinheit über Wechselwirkungen an der mRNA verbleiben kann. Um diesen Mechanismus auf molekularer Ebene zu untersuchen, wird ein Versuchsablauf vorgestellt. Dieser ermöglicht das Event bei der Termination-Reinitiation in vitro zu analysieren. Eine Unterscheidung von 30S oder 70S Ribosomen bei der Reinitiation der Translation des stromabwärts-liegenden Gens wird ermöglicht. Die Idee dabei basiert auf einem ribosome display, bei welchem Translationskomplexe am Ende der Translation nicht in ihre Bestandteile zerfallen können, da die eingesetzte mRNA kein Stop-Codon enthält Der genaue Versuchsablauf, die benötigten Bestandteile sowie proof-of-principal Versuche sind in der Arbeit dargestellt und mögliche Optimierungen werden diskutiert.


2020 ◽  
Vol 156 ◽  
pp. 107516 ◽  
Author(s):  
Guilherme Meira Lima ◽  
Brian Effer ◽  
Henrique Pellin Biasoto ◽  
Veronica Feijoli ◽  
Adalberto Pessoa ◽  
...  

2019 ◽  
Vol 20 (4) ◽  
pp. 916 ◽  
Author(s):  
Diana Humer ◽  
Oliver Spadiut

Horseradish peroxidase (HRP) is an intensely studied enzyme with a wide range of commercial applications. Traditionally, HRP is extracted from plant; however, recombinant HRP (rHRP) production is a promising alternative. Here, non-glycosylated rHRP was produced in Escherichia coli as a DsbA fusion protein including a Dsb signal sequence for translocation to the periplasm and a His tag for purification. The missing N-glycosylation results in reduced catalytic activity and thermal stability, therefore enzyme engineering was used to improve these characteristics. The amino acids at four N-glycosylation sites, namely N13, N57, N255 and N268, were mutated by site-directed mutagenesis and combined to double, triple and quadruple enzyme variants. Subsequently, the rHRP fusion proteins were purified by immobilized metal affinity chromatography (IMAC) and biochemically characterized. We found that the quadruple mutant rHRP N13D/N57S/N255D/N268D showed 2-fold higher thermostability and 8-fold increased catalytic activity with 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as reducing substrate when compared to the non-mutated rHRP benchmark enzyme.


Sign in / Sign up

Export Citation Format

Share Document