scholarly journals Optimisation and Scale-up of the Synthesis of Gold Nanoparticle-Wool Fibre Composites

2021 ◽  
Author(s):  
◽  
Thomas Wade Nilsson

<p>Gold nanoparticles are known for their remarkable optical properties; they exhibit localised surface plasmon resonance bands in the visible region of the electromagnetic spectrum. This has led to their use as luxury dyes for the colouring of wool fibres. Gold is associated with wealth and desire, and as such, gold nanoparticle-wool fibre composites may be fabricated into high-quality garments, apparel, textiles and carpets for international markets.  Novel proprietary approaches for the laboratory-scale synthesis of gold nanoparticle-wool fibre composites have previously been developed by Professor James Johnston and Dr Kerstin Lucas. The innovative nanotechnology utilises the affinity of gold for sulfur-containing cystine residues in wool fibres, to attract and bind the gold nanoparticles. One approach involves the absorption of gold ions by wool fibres and the nucleation of gold nanoparticles in-situ. In an alternative method, gold nanoparticle colloids are synthesised ex-situ, and are then used to colour wool fibres.  The reaction conditions of the in-situ and ex-situ approaches were optimised with respect to cost-effectiveness and scalability. The gold content of the in-situ composites was minimised, and the range of possible colours widened, via the use of heat and external reducing agents. In the ex-situ process, the formation and stability of the gold nanoparticle colloids was studied, and the reaction conditions of the synthesis were optimised. The rate of uptake of gold nanoparticles to wool was controlled by manipulating the pH, concentration, volume, and wool to liquor ratio of the gold colloids, and by introducing auxiliary agents into the dyeing reactions. A range of chemical treatments and alternative stabilising agents were investigated to improve the washfastness properties of ex-situ gold nanoparticle-wool fibre composites.  There are numerous size-controllable syntheses of gold nanoparticle colloids at the laboratory-scale. However, when the process is scaled-up, gold nanoparticle synthesis is no longer trivial. A barrel reactor with a high velocity mixer was utilised to achieve uniform mixing and heating in the synthesis of gold nanoparticle colloids of up to 90 L in volume. The ratios of gold to stabilising agents in the colloidal gold syntheses were optimised to result in more stable and reproducible gold colloids for subsequent dyeing reactions.  The uniform colouring of small quantities of wool is easily achieved in the laboratory, but preventing colour variation across a kilogram of wool is a significant challenge. Initial kilogram-scale dyeing reactions in static tank reactors resulted in unevenly coloured gold nanoparticle-wool fibre composites. To overcome this, conventional hank dyeing equipment was used to colour felted merino yarn, in collaboration with the wool dyeing industry. Modified hank dyeing procedures were recreated in the laboratory, and composites with remarkable colour uniformity were produced. Industrial package dyeing reactors were then used to colour fine merino yarn with gold nanoparticle colloids. The uptake of gold nanoparticles was controlled by manipulating the owrates, ow direction and amounts of auxiliary agents that were employed in the dyeing reactions.  Based upon the success of the industrial dyeing reactions, novel dyeing reactors were developed for the colouring of hanks of wool fibres and yarns in the laboratory. These reactors utilised rapid dye circulation and pressure to produce gold nanoparticle-wool fibre composites with remarkable colour uniformity. The composites were used to fabricate luxury apparel and carpets for international trade expositions.  The pathway from synthesis in the laboratory to pilot-scale production of gold nanoparticle-wool fibre composites is presented. The PhD research was an integral step in the successful commercialisation of this innovative nanotechnology, and will assist in scaling-up the synthesis of metal nanoparticle colloids and nanocomposites in the future.</p>

2021 ◽  
Author(s):  
◽  
Thomas Wade Nilsson

<p>Gold nanoparticles are known for their remarkable optical properties; they exhibit localised surface plasmon resonance bands in the visible region of the electromagnetic spectrum. This has led to their use as luxury dyes for the colouring of wool fibres. Gold is associated with wealth and desire, and as such, gold nanoparticle-wool fibre composites may be fabricated into high-quality garments, apparel, textiles and carpets for international markets.  Novel proprietary approaches for the laboratory-scale synthesis of gold nanoparticle-wool fibre composites have previously been developed by Professor James Johnston and Dr Kerstin Lucas. The innovative nanotechnology utilises the affinity of gold for sulfur-containing cystine residues in wool fibres, to attract and bind the gold nanoparticles. One approach involves the absorption of gold ions by wool fibres and the nucleation of gold nanoparticles in-situ. In an alternative method, gold nanoparticle colloids are synthesised ex-situ, and are then used to colour wool fibres.  The reaction conditions of the in-situ and ex-situ approaches were optimised with respect to cost-effectiveness and scalability. The gold content of the in-situ composites was minimised, and the range of possible colours widened, via the use of heat and external reducing agents. In the ex-situ process, the formation and stability of the gold nanoparticle colloids was studied, and the reaction conditions of the synthesis were optimised. The rate of uptake of gold nanoparticles to wool was controlled by manipulating the pH, concentration, volume, and wool to liquor ratio of the gold colloids, and by introducing auxiliary agents into the dyeing reactions. A range of chemical treatments and alternative stabilising agents were investigated to improve the washfastness properties of ex-situ gold nanoparticle-wool fibre composites.  There are numerous size-controllable syntheses of gold nanoparticle colloids at the laboratory-scale. However, when the process is scaled-up, gold nanoparticle synthesis is no longer trivial. A barrel reactor with a high velocity mixer was utilised to achieve uniform mixing and heating in the synthesis of gold nanoparticle colloids of up to 90 L in volume. The ratios of gold to stabilising agents in the colloidal gold syntheses were optimised to result in more stable and reproducible gold colloids for subsequent dyeing reactions.  The uniform colouring of small quantities of wool is easily achieved in the laboratory, but preventing colour variation across a kilogram of wool is a significant challenge. Initial kilogram-scale dyeing reactions in static tank reactors resulted in unevenly coloured gold nanoparticle-wool fibre composites. To overcome this, conventional hank dyeing equipment was used to colour felted merino yarn, in collaboration with the wool dyeing industry. Modified hank dyeing procedures were recreated in the laboratory, and composites with remarkable colour uniformity were produced. Industrial package dyeing reactors were then used to colour fine merino yarn with gold nanoparticle colloids. The uptake of gold nanoparticles was controlled by manipulating the owrates, ow direction and amounts of auxiliary agents that were employed in the dyeing reactions.  Based upon the success of the industrial dyeing reactions, novel dyeing reactors were developed for the colouring of hanks of wool fibres and yarns in the laboratory. These reactors utilised rapid dye circulation and pressure to produce gold nanoparticle-wool fibre composites with remarkable colour uniformity. The composites were used to fabricate luxury apparel and carpets for international trade expositions.  The pathway from synthesis in the laboratory to pilot-scale production of gold nanoparticle-wool fibre composites is presented. The PhD research was an integral step in the successful commercialisation of this innovative nanotechnology, and will assist in scaling-up the synthesis of metal nanoparticle colloids and nanocomposites in the future.</p>


2020 ◽  
Vol 56 (71) ◽  
pp. 10329-10332 ◽  
Author(s):  
Paulo F. M. de Oliveira ◽  
Adam A. L. Michalchuk ◽  
Ana Guilherme Buzanich ◽  
Ralf Bienert ◽  
Roberto M. Torresi ◽  
...  

A new tandem approach combines XRD and XANES for time-resolved in situ monitoring of the mechanochemical synthesis of gold nanoparticles.


2016 ◽  
Vol 15 (2) ◽  
pp. 181-186
Author(s):  
Ming-Hao Yao ◽  
Jie Yang ◽  
Dong-Hui Zhao ◽  
Rui-Xue Xia ◽  
Rui-Mei Jin ◽  
...  

A facile method for in situ fabrication of three-dimensional gold nanoparticles micropatterns throughout a polyethylene glycol hydrogel substrate has been developed by combining photochemical synthesis of gold nanoparticles with photolithography technology.


2013 ◽  
Vol 661 ◽  
pp. 47-52
Author(s):  
Gang Chen ◽  
Chun Hua Yang

Gold nanoparticles (AuNPs) were attached to the surface of alumina particles by an in-situ immobilizing method. SEM and XPS analysis showed that the coverage of alumina particles by AuNPs increased as the amount of alumina decreased; AuNPs onto alumina particles by the conventional colloidal deposition method were also prepared, whose TEM showed that the coverage of AuNPs was evidently smaller than that in the case of modified colloidal deposition method,although the AuNPs were spread almost uniformly over the surface of alumina particles. Au-immobilized alumina particles were subsequently utilized as the catalysts for direct amination of benzene with NH3H2O as an aminating agent and H2O2 as an oxidant under mild conditions. The reaction conditions were optimized: when catalyst amount was 2.0 g, reaction temperature was 50 °C, NH3H2O amount was 60 mL, H2O2 amount was 30 mL, and reaction time is 2 h, Au-immobilized alumina particles showed the highest aniline yield (1.96 mg) for 25 mL benzene.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Chanbasha Basheer

We applied a simple, low-cost design of glass capillary microreactor for the catalytic oxidation of benzene to phenol at ambient conditions. Polyvinylchloride-nanofiber-membrane-supported titania nanoparticle (TiO2-PVC) as catalyst and in situ production of hydroxyl radicals as oxidant. The reaction was monitored by gas chromatography-mass spectrometry (GC-MS). The reaction conditions were optimized and the performance of the microreactor was then compared with the conventional laboratory scale reaction which used hydrogen peroxide as oxidant. The microreactor gave a better yield of 14% for phenol compared to 0.14% in the conventional laboratory scale reaction. Reaction conditions such as reaction time, reaction pH, and applied potential were optimized. With optimized reaction conditions selectivity of >37% and >88% conversion of benzene were obtained.


2015 ◽  
Vol 51 (3) ◽  
pp. 530-533 ◽  
Author(s):  
Maik Schlesinger ◽  
Michael Giese ◽  
Lina K. Blusch ◽  
Wadood Y. Hamad ◽  
Mark J. MacLachlan

Nearly monodisperse gold nanoparticles with chiroptical properties are prepared by the in situ reduction of Au3+ inside mesoporous photonic cellulose.


2020 ◽  
Vol 2 (12) ◽  
pp. 5737-5745
Author(s):  
Tejaswini Appidi ◽  
Sushma V. Mudigunda ◽  
Suseela Kodandapani ◽  
Aravind Kumar Rengan

“C-ColAur” technique for colorimetric detection of cervical cancer by in situ formation of gold nanoparticles.


1999 ◽  
Vol 569 ◽  
Author(s):  
Thi Thi Lay ◽  
H. Amekura ◽  
Y. Takeda ◽  
N. Kishimoto

ABSTRACTIon-induced photon emission from a silica glass irradiated with high-flux Cu ions was measured in a wavelength range from 450 nm to 800 nm, while nanoyarticles spontaneously formed in the silica glass. Current density was varied up to 100 µA/cm2 at a constant total dose of 3×106ions/cm2. The photon emission primarily arose from the vicinity of the substrate surface and consisted of sharp peaks due to neutral and singly-ionized species, Cu(I), Cu(II) and Si(II) ions, as well as a broad-band background. Intensity of Si(II) and Cu(I) increased with increasing current density. On the other hand, Cu(II) did not show a monotonic increase, decreasing around 100 µA/cm2. Measurements of in-situ EDX and ex-situ RBS were also conducted to study the relevant mechanisms. The ion-induced photon emission was attributed to recombination processes of sputtered ions and electrons in the plasma, induced by the high-flux Cu beam.


2021 ◽  
Vol 123 ◽  
pp. 112018
Author(s):  
Sarah Briceño ◽  
Eva A. Chavez-Chico ◽  
Gema González
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document