scholarly journals The Synthesis of Malonganenone Analogues for Antiparasitic Structure-Activity Relationship Analyses

2021 ◽  
Author(s):  
◽  
Sarah Andreassend

<p>The most lethal causative species of malaria, Plasmodium falciparum, has been reported as developing resistance against current antimalarial drugs in South-East Asia. New antimalarial drugs, especially those with novel modes of action, need to be established before resistance spreads.  The marine natural products malonganenones A, B, and C, isolated from the gorgonian Leptogorgia gilchristi, have recently been shown to inhibit P. falciparum parasite growth. Therefore, a library of malonganenone analogues were synthesised for structure activity relationship analysis. A range of purines, purinones, and pyrimidines were alkylated with simple terpenoid chains to generate malonganenone A and B analogues, while malonganenone C analogues were made by acetylation or formylation, then methylation of terpenoid amines.  The compounds were moderately active against P. falciparum infected red blood cells, but exhibited significant activity against Trypanosoma brucei, the parasite responsible for African sleeping sickness. Off target activity was assessed by assay against Escherichia coli, Staphylococcus aureus, Steptococcus uberis and HeLa cells. The overall structureactivity relationship analysis resulted in the identification of lead candidate, geranylgeranyl imidazole (146), which had IC50 values of 10.2 μM and 3.4 μM against P. falciparum and T. brucei, respectively.  In addition, the minimum inhibitory concentration of 146 against S. uberis and S. aureus was 16 – 32 μM and 128 μM, respectively. Compound 146 was inactive against E. coli and was also non-toxic to HeLa cells. In addition, a geometric mixture of E and Z isomers at the alkene closest to the imidazole head group was more active than just the E isomer as for 146, which suggested the Z isomer was more active than the E isomer. Therefore, the lead compound identified within this project was the 2Z isomer of geranylgeranyl imidazole.</p>

2021 ◽  
Author(s):  
◽  
Sarah Andreassend

<p>The most lethal causative species of malaria, Plasmodium falciparum, has been reported as developing resistance against current antimalarial drugs in South-East Asia. New antimalarial drugs, especially those with novel modes of action, need to be established before resistance spreads.  The marine natural products malonganenones A, B, and C, isolated from the gorgonian Leptogorgia gilchristi, have recently been shown to inhibit P. falciparum parasite growth. Therefore, a library of malonganenone analogues were synthesised for structure activity relationship analysis. A range of purines, purinones, and pyrimidines were alkylated with simple terpenoid chains to generate malonganenone A and B analogues, while malonganenone C analogues were made by acetylation or formylation, then methylation of terpenoid amines.  The compounds were moderately active against P. falciparum infected red blood cells, but exhibited significant activity against Trypanosoma brucei, the parasite responsible for African sleeping sickness. Off target activity was assessed by assay against Escherichia coli, Staphylococcus aureus, Steptococcus uberis and HeLa cells. The overall structureactivity relationship analysis resulted in the identification of lead candidate, geranylgeranyl imidazole (146), which had IC50 values of 10.2 μM and 3.4 μM against P. falciparum and T. brucei, respectively.  In addition, the minimum inhibitory concentration of 146 against S. uberis and S. aureus was 16 – 32 μM and 128 μM, respectively. Compound 146 was inactive against E. coli and was also non-toxic to HeLa cells. In addition, a geometric mixture of E and Z isomers at the alkene closest to the imidazole head group was more active than just the E isomer as for 146, which suggested the Z isomer was more active than the E isomer. Therefore, the lead compound identified within this project was the 2Z isomer of geranylgeranyl imidazole.</p>


2020 ◽  
Vol 10 (2) ◽  
pp. 168-176
Author(s):  
Krishnasamy Gopinath ◽  
Nagarajan Subbiah ◽  
Muthusamy Karthikeyan

Background: Syzygium densiflorum Wall. ex Wight & Arn (Myrtaceae) has been traditionally used by the local tribes of the Nilgiris, Tamil Nadu, India, for the treatment of diabetes. Objective: This study aimed to isolate the major phytoconstituents from the S. densiflorum fruits and to perform computational studies for chemical reactivity and biological activity of the isolated compound. Materials and Methods: Two different compounds were isolated from ethanolic extract of S. densiflorum fruits and purified using HPLC. The structures of the compounds were elucidated on the basis of their 1H NMR, 13C NMR, 1H-1H COSY, HMBC, HRESIMS, and FT-IR data. Further, the chemical reactivity of the compounds was analyzed by density functional theory calculations and its therapeutic role in diabetic management was examined by comparing the structure of isolated compounds with previously reported bioactive compounds. Results: Of the two compounds ((6,6 & 1-kestopentaose (1) and 6-(hydroxymethyl)-3-[3,4,5- trihydroxy- 6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoxane-2,4,5-triol)(2)). β-glucosidase, β-galactosidase, α-glucosidase and β-amylase inhibition activity of the compounds were predicted by structure activity relationship. Conclusion: Structure-activity relationship analysis was performed to predict the therapeutic role of isolated compounds. These computational studies may be performed to minimize the efforts to determine the therapeutic role of natural compounds.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1924
Author(s):  
Thi Thanh Hanh Nguyen ◽  
Jong-Hyun Jung ◽  
Min-Kyu Kim ◽  
Sangyong Lim ◽  
Jae-Myoung Choi ◽  
...  

The main protease (Mpro) is a major protease having an important role in viral replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus that caused the pandemic of 2020. Here, active Mpro was obtained as a 34.5 kDa protein by overexpression in E. coli BL21 (DE3). The optimal pH and temperature of Mpro were 7.5 and 37 °C, respectively. Mpro displayed a Km value of 16 μM with Dabcyl-KTSAVLQ↓SGFRKME-Edans. Black garlic extract and 49 polyphenols were studied for their inhibitory effects on purified Mpro. The IC50 values were 137 μg/mL for black garlic extract and 9–197 μM for 15 polyphenols. The mixtures of tannic acid with puerarin, daidzein, and/or myricetin enhanced the inhibitory effects on Mpro. The structure–activity relationship of these polyphenols revealed that the hydroxyl group in C3′, C4′, C5′ in the B-ring, C3 in the C-ring, C7 in A-ring, the double bond between C2 and C3 in the C-ring, and glycosylation at C8 in the A-ring contributed to inhibitory effects of flavonoids on Mpro.


Sign in / Sign up

Export Citation Format

Share Document