A Hybrid UKF-MAG Algorithm for Finite Element Model Updating of Historical Constructions

Author(s):  
Javier Naranjo-Pérez ◽  
Andrés Sáez ◽  
Javier F. Jiménez-Alonso ◽  
Pablo Pachón ◽  
Víctor Compán

<p>The finite element model (FE) updating is a calibration method that allows minimizing the discrepancies between the numerical and experimental modal parameters. As result, a more accurate FE model is obtained and the structural analysis can represent the real behaviour of the structure. However, it is a high computational cost process. To overcome this issue, alternative techniques have been developed. This study focuses on the use of the unscented Kalman filter (UKF), which is a local optimization algorithm based on statistical estimation of parameters taken into account the measurements. The dome of a real chapel is considered as benchmark structure. A FE model is updated applying two different algorithms: (i) the multi-objective genetic algorithm and (ii) a hybrid unscented Kalman filter-multi-objective genetic algorithm (UKF-MGA). Finally, a discussion of the results will be presented to compare the performance of both algorithms.</p>

2013 ◽  
Vol 71 (1-4) ◽  
pp. 593-603 ◽  
Author(s):  
Usama Umer ◽  
Jaber Abu Qudeiri ◽  
Hussein Abdalmoneam Mohammed Hussein ◽  
Awais Ahmed Khan ◽  
Abdul Rahman Al-ahmari

2013 ◽  
Vol 456 ◽  
pp. 576-581 ◽  
Author(s):  
Li Fu Xu ◽  
Na Ta ◽  
Zhu Shi Rao ◽  
Jia Bin Tian

A 2-D finite element model of human cochlea is established in this paper. This model includes the structure of oval window, round window, basilar membrane and cochlear duct which is filled with fluid. The basilar membrane responses are calculated with sound input on the oval window membrane. In order to study the effects of helicotrema on basilar membrane response, three different helicotrema dimensions are set up in the FE model. A two-way fluid-structure interaction numerical method is used to compute the responses in the cochlea. The influence of the helicotrema is acquired and the frequency selectivity of the basilar membrane motion along the cochlear duct is predicted. These results agree with the experiments and indicate much better results are obtained with appropriate helicotrema size.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Hong Yin ◽  
Jingjing Ma ◽  
Kangli Dong ◽  
Zhenrui Peng ◽  
Pan Cui ◽  
...  

Model updating in structural dynamics has attracted much attention in recent decades. And high computational cost is frequently encountered during model updating. Surrogate model has attracted considerable attention for saving computational cost in finite element model updating (FEMU). In this study, a model updating method using frequency response function (FRF) based on Kriging model is proposed. The optimal excitation point is selected by using modal participation criterion. Initial sample points are chosen via design of experiment (DOE), and Kriging model is built using the corresponding acceleration frequency response functions. Then, Kriging model is improved via new sample points using mean square error (MSE) criterion and is used to replace the finite element model to participate in optimization. Cuckoo algorithm is used to obtain the updating parameters, where the objective function with the minimum frequency response deviation is constructed. And the proposed method is applied to a plane truss model FEMU, and the results are compared with those by the second-order response surface model (RSM) and the radial basis function model (RBF). The analysis results showed that the proposed method has good accuracy and high computational efficiency; errors of updating parameters are less than 0.2%; damage identification is with high precision. After updating, the curves of real and imaginary parts of acceleration FRF are in good agreement with the real ones.


Author(s):  
Babak Ebrahimi ◽  
Amir Khajepour ◽  
Todd Deaville

This paper discusses the modeling and analysis of a novel audio subwoofer system for automotive applications using the automobile windshield glass. The use of a piezo-electric actuator coupled with a mechanical amplifier linked to a large glass panel provides a highly efficient method of producing sound. The proposed subwoofer system has the advantage over existing conventional systems of not only reducing the weight of the automobile, but also a significant power savings resulting in an increase of expected fuel economy. Among various design challenges, the glass-sealing design is of huge importance, as it affects the system dynamic response and so the output sound characteristics. The main goal in this manuscript is to evaluate different glass-sealing design configurations by providing a comprehensive Finite Element model of the system. To do so, a comprehensive, yet simplified FE model is developed, and experimental studies are performed in the component level to fine-tune and verify the model. Harmonic response of the system for each sealing configuration design is obtained in the frequency range of 0–200 Hz, and the results are compared and discussed. The finite element model is also beneficial in preliminary design of other components as well as the exciter placement, and predicting the performance of the overall system.


Author(s):  
Massimiliano Gobbi ◽  
Giorgio Previati ◽  
Giampiero Mastinu

An off-road motorcycle frame has been analyzed and modified to optimize its fatigue life. The fatigue life of the frame is very important to define the service life of the motorcycle. The strain levels on key parts of the frame were collected during experimental tests. It has been possible to locate the areas where the maximum stress level is reached. A finite element (FE) model of the frame has been developed and used for estimating its fatigue life. Static test bench results have been used to validate the FE model. The accuracy of the finite element model is good, the errors are always below 5% with respect to measured data. The mission profile of the motorcycle is dominated by off-road use, with stress levels close to yield point, so a strain-life approach has been applied for estimating the fatigue life of the frame. Particular attention has been paid to the analysis of the welded connections. A shell and a 3D FE model have been combined to simulate the stress histories at the welds. Two reference maneuvers have been considered as loading conditions. The computed stresses have been used to assess the life of the frame according to the notch stress approach (Radaj & Seeger). The method correlates the stress range in a idealized notch, characterized by a fictitious radius in the weld toe or root, to the fatigue life by using a single S-N curve. New technical frame layouts have been proposed and verified by means of the developed finite element model. The considered approach allows to speed up the design process and to reduce the testing phase.


Sign in / Sign up

Export Citation Format

Share Document