scholarly journals The acaricidal effect of flumethrin, oxalic acid and amitraz against Varroa destructor in honey bee (Apis mellifera carnica) colonies

2011 ◽  
Vol 80 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Maja Ivana Smodiš Škerl ◽  
Mitja Nakrst ◽  
Lucija Žvokelj ◽  
Aleš Gregorc

During 2007 and 2008, natural mite mortality was recorded in honey bee colonies. These colonies were then treated with various acaricides against Varroa destructor and acaricide efficacies were evaluated. In 2007, experimental colonies were treated with flumethrin and/or oxalic acid and in 2008 the same colonies were treated with flumethrin, oxalic acid or amitraz. The efficacy of flumethrin in 2007 averaged 73.62% compared to 70.12% for three oxalic acid treatments. In 2008, a reduction of 12.52% in mite numbers was found 4 weeks after flumethrin application, while 4 oxalic acid applications produced significantly higher (P < 0.05) mite mortality, an average of 24.13%. Four consecutive amitraz fumigations produced a 93.82% reduction on average in final mite numbers and thus ensure normal colony development and overwintering. The study is important in order to demonstrate that synthetic acaricides should be constantly re-evaluated and the use of flumethrin at low efficacies need to be superseded by appropriate organic treatments to increase the efficacy of mite control in highly-infested colonies during the period of brood rearing.

2012 ◽  
Vol 56 (2) ◽  
pp. 61-69 ◽  
Author(s):  
Aleš Gregorc ◽  
Ivo Planinc

Abstract Experiments were conducted in three apiaries to assess the comparative efficacy of: Thymovar (Andermatt BioVet AG); Apiguard (Vita Europe Ltd., UK); an oxalic acid solution (OA) which consisted of 2.9% oxalic acid and 31.9% sugar in water; and amitraz fumigation, for controlling the honey bee mite Varroa destructor. Mite mortality increased significantly (p<0.001) in the Thymovar, Apiguard, OA or amitraz treated colonies. The relative mite mortality after: four OA applications, two Thymovar or two Apiguard applications during August and September in the Senično apiary was 41.80% (±14.31), 14.35% (±10.71), and 18.93% (±13.56), respectively. In the control, i.e. untreated colonies, the mite natural mortality was reduced by 3.10% (±3.50). In the Bohinj apiary, two Apiguard applications and a single amitraz treatment resulted in reducing the mite populations by 19.71% (±12.61) and 23.89% (±14.25), respectively. At the Mediterranean located apiary of Vipava, the Thymovar and Apiguard treatments trigged 59.02% (±17.28) and 46.50% (±13.33) of the total mite reduction. In the Vipava apiary, colonies treated with any miticide during the brood period presented no difference (P>0.05) in efficacy. The results indicate that OA, Thymovar, Apiguard or amitraz fumigations are of limited use during the brood periods.


2018 ◽  
pp. 83-87
Author(s):  
Marianna Takács ◽  
János Oláh

An apiary trial was conducted in 2016 August to October in Szabolcs-Szatmár-Bereg County, Nyírmada to evaluate the influence of queen’s age on the Varroa destructor-burden in the treatment colonies. Sixty colonies of bees belonging to the subspecies Apis mellifera carnica pannonica in Hunor loading hives (with 10 frames in the brood chamber/deep super) were used. The colonies were treated with amitraz and the organophosphate pesticide coumaphos active ingredients. The amitraz treatment includes 6 weeks. The coumaphos treatment with Destructor 3.2% can be used for both diagnosis and treatment of Varroasis. For diagnosis, one treatment is sufficient. For control, two treatments at an interval of seven days are required. The colonies were grouped by the age of the queen: 20 colonies with one-year-old, 20 colonies with two-year-old and 20 colonies with three-year-old queen. The mite mortality of different groups was compared. The number of fallen mites was counted at the white bottom boards. The examination of spring growth of honey bee colonies has become necessary due to the judgement of efficiency of closing treatment. The data was recorded seven times between 16th March 2017 and 19th May 2017. Data on fallen mites were subjected to one-way analysis of variance (ANOVA) and Post-Hoc Tukey-test. Statistical analysis was performed using the software of IBM SPSS (version 21.). During the first two weeks after treatments, the number of fallen mites was significantly higher in the older queen’s colonies (Year 2014). The total mite mortality after amitraz treatment in the younger queen’s colonies was lower (P<0.05) compared to the three-year-old queen’s colonies. According to Takács and Oláh (2016) although the mitemortality tendency, after the coumaphos (closing) treatment in colonies which have Year 2014 queen showed the highest rate, considering the mite-burden the colonies belongs to the average infected category. The colonial maintenance ability of three-year-old queen cannot be judged based on the influencing effect on the mite-burden. The importance of the replacement of the queen was judged by the combined effect of several factors. During the spring-growth study (16th March–19th May) was experienced in the three-year-old queen’s colonies the number of brood frames significantly lower compared to the one- and two-year-old queen’s colonies. In the study of 17th April and 19th May each of the three queen-year-groups were varied. Therefore in the beekeeping season at different times were determined the colonial maintenance ability of queens by more factors: efficiency of closing treatment in early spring, the spring-growth of bee colonies, the time of population shift (in current study, this time was identical in each queen-year), honey production (from black locust).


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 243 ◽  
Author(s):  
Aleš Gregorc ◽  
Blair Sampson

Determining varroa mite infestation levels in honey bee colonies and the proper method and time to perform a diagnosis are important for efficient mite control. Performing a powdered sugar shake or counting mites that drop from combs and bees onto a hive bottom board are two reliable methods for sampling varroa mite to evaluate the efficacy of an acaricide treatment. This overview summarizes studies that examine the efficacy of organic acids and essential oils, mite monitoring, and brood interruption for integrated varroa mite control in organic beekeeping.


Apidologie ◽  
2017 ◽  
Vol 48 (6) ◽  
pp. 821-832 ◽  
Author(s):  
Aleš Gregorc ◽  
Mohamed Alburaki ◽  
Chris Werle ◽  
Patricia R. Knight ◽  
John Adamczyk

2016 ◽  
Vol 85 (3) ◽  
pp. 255-260
Author(s):  
Ivana Papežíková ◽  
Miroslava Palíková ◽  
Stanislav Navrátil ◽  
Radka Heumannová ◽  
Michael Fronc

Oxalic acid is one of the organic acids used for controlling Varroa destructor, a mite parasitizing the honey bee (Apis mellifera). The aim of this work was to examine the effect of oxalic acid applied by sublimation on honey bee colony fitness, and to compare it with the effect of amitraz, a routinely used synthetic acaricide. Bee colonies of equal strength were randomly divided into two groups. In December 2014, one group was treated with amitraz in the form of aerosol, and the second group was treated with oxalic acid applied by sublimation. The colonies were monitored over winter. Dead bees found at the bottom of the hive were counted regularly and examined microscopically for infection with Nosema sp. (Microsporidia). At the end of March 2015, living foragers from each hive were sampled and individually examined for Nosema sp. infection. Colony strength was evaluated at the beginning of April. No adverse effect of oxalic acid on colony strength was observed despite the fact that the total number of dead bees was non-significantly higher in the oxalic acid-treated group. Examination of dead bees for Nosema infection did not reveal significant differences in spore numbers between the experimental groups. There was a substantial difference in living individuals, however, with a significantly higher amount of spores per bee found in the amitraz-treated colonies compared to the oxalic acid-treated colonies. Compared to amitraz, oxalic acid applied by sublimation showed no adverse effects on bee colony fitness or on successful overwintering.


2007 ◽  
Vol 76 (2) ◽  
pp. 309-314 ◽  
Author(s):  
A. Gregorc ◽  
M. I. Smodiš Škerl

Mite mortality in two apiaries, one with 32 and the other with 15 honeybee (Apis mellifera carnica) colonies, was recorded prior to and after flumethrin or fluvalinate treatments and after a control, oxalic-acid application. During the 42- and 51-day pre-treatment periods, the average daily natural mite drop was 0.04 (± 0.04) and 2.82 (± 2.19), respectively, which represents 1.09% (± 1.06) and 3.84% (± 3.04) of the total number of mites found during the experiment. The flumethrin or fluvalinate applications resulted in an average mite mortality at the two apiaries of 214.46 (± 260.02) and 4,098.64 (± 2,508.31). The treatments resulted in a 19.11% (± 14.62) and a 39.28% (± 10.47) reduction in the number of mites in slightly infested colonies and 94.30% (± 4.26) and 96.24% (± 3.14) in highly infested colonies. The difference in treatment efficacy between both apiaries was significant (P < 0.001) and indicates that fluvalinate and flumethrin are highly efficacious in dealing with highly infested honeybee colonies with sealed brood. The importance of effective mite control in colonies with a high level of natural mite mortality is discussed in this study.


Sign in / Sign up

Export Citation Format

Share Document