viral dynamics
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 110)

H-INDEX

43
(FIVE YEARS 8)

Author(s):  
Stephen M. Kissler ◽  
Joseph R. Fauver ◽  
Christina Mack ◽  
Caroline G. Tai ◽  
Mallery I. Breban ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marinda Mortlock ◽  
Marike Geldenhuys ◽  
Muriel Dietrich ◽  
Jonathan H. Epstein ◽  
Jacqueline Weyer ◽  
...  

AbstractBat-borne viruses in the Henipavirus genus have been associated with zoonotic diseases of high morbidity and mortality in Asia and Australia. In Africa, the Egyptian rousette bat species (Rousettus aegyptiacus) is an important viral host in which Henipavirus-related viral sequences have previously been identified. We expanded these findings by assessing the viral dynamics in a southern African bat population. A longitudinal study of henipavirus diversity and excretion dynamics identified 18 putative viral species circulating in a local population, three with differing seasonal dynamics, and the winter and spring periods posing a higher risk of virus spillover and transmission. The annual peaks in virus excretion are most likely driven by subadults and may be linked to the waning of maternal immunity and recolonization of the roost in early spring. These results provide insightful information into the bat-host relationship that can be extrapolated to other populations across Africa and be communicated to at-risk communities as a part of evidence-based public health education and prevention measures against pathogen spillover threats.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Asher Leeks ◽  
Stuart A. West ◽  
Melanie Ghoul

AbstractThe success of many viruses depends upon cooperative interactions between viral genomes. However, whenever cooperation occurs, there is the potential for ‘cheats’ to exploit that cooperation. We suggest that: (1) the biology of viruses makes viral cooperation particularly susceptible to cheating; (2) cheats are common across a wide range of viruses, including viral entities that are already well studied, such as defective interfering genomes, and satellite viruses. Consequently, the evolutionary theory of cheating could help us understand and manipulate viral dynamics, while viruses also offer new opportunities to study the evolution of cheating.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lorna Leal ◽  
Elvira Couto ◽  
Sonsoles Sánchez-Palomino ◽  
Núria Climent ◽  
Irene Fernández ◽  
...  

IntroductionFunctional cure has been proposed as an alternative to lifelong antiretroviral therapy and therapeutic vaccines represent one of the most promising approaches.Materials and MethodsWe conducted a double-blind randomized placebo-controlled clinical trial to evaluate the safety, immunogenicity, and effect on viral dynamics of a therapeutic vaccine produced with monocyte-derived dendritic cells (MD-DC) loaded with a high dose of heat-inactivated autologous (HIA) HIV-1 in combination with pegylated interferon alpha 2a (IFNα-2a) in people with chronic HIV-1.ResultsTwenty-nine male individuals on successful ART and with CD4+ ≥450 cells/mm3 were randomized 1:1:1:1 to receive three ultrasound-guided inguinal intranodal immunizations, one every 2 weeks: (1) vaccine ~107 MD-DC pulsed with HIA-HIV-1 (1010 HIV RNA copies) (n = 8); (2) vaccine plus three doses of 180 mcg IFNα-2a at weeks 4–6 (n = 6); (3) placebo = saline (n = 7); and (4) placebo plus three doses of 180 mcg IFNα-2a (n = 8). Thereafter, treatment was interrupted (ATI). Vaccines, IFNα-2a, and the administration procedures were safe and well tolerated. All patients’ viral load rebounded during the 12-week ATI period. According to groups, changes in viral set-point between pre-ART and during ATI were not significant. When comparing all groups, there was a tendency in changes in viral set-point between the vaccine group vs. vaccine + IFNα-2a group (>0.5log10p = 0.05). HIV-1-specific T-cell responses (IFN-ƴ Elispot) were higher at baseline in placebo than in the vaccine group (2,259 ± 535 vs. 900 ± 200 SFC/106 PBMC, p = 0.028). A significant difference in the change of specific T-cell responses was only observed at week 4 between vaccine and placebo groups (694 ± 327 vs. 1,718 ± 282 SFC/106 PBMC, p = 0.04). No effect on T-cell responses or changes in viral reservoir were observed after INFα-2a administration.DiscussionResults from this study show that intranodally administered DC therapeutic vaccine in combination with IFNα-2a was safe and well-tolerated but had a minimal impact on viral dynamics in HIV-1 chronic infected participants.Clinical Trial Registration(www.ClinicalTrials.gov), identifier NCT02767193


2021 ◽  
Author(s):  
◽  
Jana Dobelmann

<p><b>Emerging infectious diseases threaten public health, livestock economies, and wildlife. Human-mediated species introductions can alter host and pathogen communities that shape the dynamics of infectious diseases. Several RNA viruses that have been linked to population declines in wild pollinators and losses of managed honey bees have been detected in multiple other species and are suspected to circulate within insect communities. Yet, we lack an understanding of how disease dynamics are affected by the introduction of novel species. These introduced species include invasive ants, which can disturb honey bees and become a pest in apiaries. The Argentine ant (Linepithema humile) is a globally successful invader that has been observed to attack bees and multiple bee-associated viruses have been detected in this ant species.</b></p> <p>Here, I studied interactions between Argentine ants and European honey bees (Apis mellifera) and how these interactions affect viral dynamics in beehives. I first tested a range of pollinators and associated insects for RNA viruses that are pathogenic to honey bees. Bee-associated viruses showed evidence for active viral replication in several pollinator species but also in species that cohabit in beehives such as ants, spiders, and cockroaches. Using phylogenetic analyses, I found that viral transmission within communities was shaped by geographic origin rather than being restricted by species barriers. Next, I used a longitudinal field study to test whether Argentine ant presence affected pathogen infections and survival in beehives. Argentine ants tested positive for three bee-associated viruses even before beehives were moved into ant-infested sites. Increased levels of deformed wing virus in beehives in autumn were associated with ant presence, although hive mortality was not affected by ants over the duration of this experiment. I used RNA sequencing on a subset of honey bee samples collected during autumn to study the RNA virome and identify transcriptomic responses associated with ant presence. Twelve RNA viruses were found in beehives, among those, three plant-associated viruses and an unclassified RNA virus that had not previously been observed in honey bees. Deformed wing virus showed the highest viral titres in most hives, but was only marginally affected by ant presence. Sacbrood virus and tomato ringspot virus levels were increased in hives with ants, however, both viruses are not known to infect Argentine ants and the plant-associated tomato ringspot virus seems unlikely to affect bee health.</p> <p>Lastly, I tested the feasibility of controlling Argentine ants in apiaries using a novel pest control strategy. RNA interference is a conserved cellular gene regulation mechanism that could be used to silence specific genes in ants. Using double-stranded RNA (dsRNA) to silence two immune-related genes in Argentine ants was expected to increase pathogen susceptibility, which could then lead to higher pathogen levels that reduce ant numbers. My results indicated that no consistent immune silencing could be achieved in the field. Immune gene expression changes were observed, but pathogen titres were not affected, and ant numbers stayed high. Argentine ant control using a conventional insecticide significantly increased bee survival, whereas many hives in the dsRNA and control group abandoned their hives due to ant attacks. Although population control was not successful using the two Argentine ant-specific dsRNAs, insights into ant immunity and ant-bee interactions could improve the development of novel control strategies.</p> <p>Bee-associated viruses have repeatedly been detected in ant species, yet, this is one of the first studies to investigate whether ants affect viral dynamics in honey bees. I showed that invasive Argentine ants are associated with increases in viral pathogens in honey bees. The mechanisms by which ants affect bee disease are unknown, although there is some evidence for ants transmitting viruses or causing stress responses in bees that affect immunity. The findings of this thesis highlight the risk of invasive ant species disrupting pollination services. New and environmentally-friendly methods to control invasive species are urgently needed to improve bee health and limit the spread of invasive ants, such as Argentine ants. The high prevalence of bee-associated viruses and viral diversity in ants suggests that pathogens that are suitable for population control might be present in ant populations, although risks of spillovers into other species need to be carefully considered.</p>


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S362-S363
Author(s):  
Youfang Cao ◽  
Wei Gao ◽  
Ruthie Birger ◽  
Julie Stone

Abstract Background Molnupiravir (MOV) is an orally administered ribonucleoside prodrug of β-D-N4-hydroxycytidine (NHC) against SARS-CoV-2. Here we present viral dynamics analysis of Phase 2 clinical virology data to inform MOV Phase 3 study design and development strategy. Methods An Immune-Viral Dynamics Model (IVDM) was developed with mechanisms of SARS-CoV-2 infection, replication, and induced immunity, which together describe the dynamics of viral load (VL) during disease progression. Longitudinal virology data from ferret studies (Cox, et al. Nat. Microbiol 2021:6-11) were used to inform IVDM, which was further translated to human by adjusting parameter values to capture clinical data from MOVe-IN/MOVe-OUT studies. Different placements of drug effects (on viral infectivity vs. productivity) and representations of immune response were explored to identify the best ones to describe data. A simplified 95% drug effect was implemented to represent a highly effective dose of MOV. Results IVDM showed data were best described when MOV acts on viral infectivity, consistent with the error catastrophe mechanism of action. A cascade of innate and adaptive immune response and a basal level activation enabled durable immunity and continued viral decay after treatment end. IVDM reasonably describes VL and viral titer data from animals and humans. Influence of MOV start time was explored using simulations. Consistent with the ferret studies, simulations showed when treatment is started within the first week post infection, MOV reduces viral growth, resulting in a lower and shortened duration of detectable VL. When started later (e.g. &gt;7 days since symptom onset), the magnitude of drug effect is substantially diminished in a typical patient with an effective immune response which reduces VL prior to treatment start. Further work is needed to model response in patients with longer term infection, where MOV drug effects may have more persistent utility. Conclusion A COVID-19 IVDM developed using multiscale MOV virology data supports drug action on viral infectivity and importance of interplay of treatment and immune response and can describe infection time course and drug effect. IVDM provided mechanistic interpretations for VL drug effect in clinical studies. Disclosures Youfang Cao, PhD, Merck & Co. (Employee) Wei Gao, PhD, Merck & Co., Inc. (Employee, Shareholder) Ruthie Birger, PhD, Merck (Employee) Julie Stone, PhD, Merck & Co., Inc. (Employee, Shareholder)


2021 ◽  
Author(s):  
◽  
Jana Dobelmann

<p><b>Emerging infectious diseases threaten public health, livestock economies, and wildlife. Human-mediated species introductions can alter host and pathogen communities that shape the dynamics of infectious diseases. Several RNA viruses that have been linked to population declines in wild pollinators and losses of managed honey bees have been detected in multiple other species and are suspected to circulate within insect communities. Yet, we lack an understanding of how disease dynamics are affected by the introduction of novel species. These introduced species include invasive ants, which can disturb honey bees and become a pest in apiaries. The Argentine ant (Linepithema humile) is a globally successful invader that has been observed to attack bees and multiple bee-associated viruses have been detected in this ant species.</b></p> <p>Here, I studied interactions between Argentine ants and European honey bees (Apis mellifera) and how these interactions affect viral dynamics in beehives. I first tested a range of pollinators and associated insects for RNA viruses that are pathogenic to honey bees. Bee-associated viruses showed evidence for active viral replication in several pollinator species but also in species that cohabit in beehives such as ants, spiders, and cockroaches. Using phylogenetic analyses, I found that viral transmission within communities was shaped by geographic origin rather than being restricted by species barriers. Next, I used a longitudinal field study to test whether Argentine ant presence affected pathogen infections and survival in beehives. Argentine ants tested positive for three bee-associated viruses even before beehives were moved into ant-infested sites. Increased levels of deformed wing virus in beehives in autumn were associated with ant presence, although hive mortality was not affected by ants over the duration of this experiment. I used RNA sequencing on a subset of honey bee samples collected during autumn to study the RNA virome and identify transcriptomic responses associated with ant presence. Twelve RNA viruses were found in beehives, among those, three plant-associated viruses and an unclassified RNA virus that had not previously been observed in honey bees. Deformed wing virus showed the highest viral titres in most hives, but was only marginally affected by ant presence. Sacbrood virus and tomato ringspot virus levels were increased in hives with ants, however, both viruses are not known to infect Argentine ants and the plant-associated tomato ringspot virus seems unlikely to affect bee health.</p> <p>Lastly, I tested the feasibility of controlling Argentine ants in apiaries using a novel pest control strategy. RNA interference is a conserved cellular gene regulation mechanism that could be used to silence specific genes in ants. Using double-stranded RNA (dsRNA) to silence two immune-related genes in Argentine ants was expected to increase pathogen susceptibility, which could then lead to higher pathogen levels that reduce ant numbers. My results indicated that no consistent immune silencing could be achieved in the field. Immune gene expression changes were observed, but pathogen titres were not affected, and ant numbers stayed high. Argentine ant control using a conventional insecticide significantly increased bee survival, whereas many hives in the dsRNA and control group abandoned their hives due to ant attacks. Although population control was not successful using the two Argentine ant-specific dsRNAs, insights into ant immunity and ant-bee interactions could improve the development of novel control strategies.</p> <p>Bee-associated viruses have repeatedly been detected in ant species, yet, this is one of the first studies to investigate whether ants affect viral dynamics in honey bees. I showed that invasive Argentine ants are associated with increases in viral pathogens in honey bees. The mechanisms by which ants affect bee disease are unknown, although there is some evidence for ants transmitting viruses or causing stress responses in bees that affect immunity. The findings of this thesis highlight the risk of invasive ant species disrupting pollination services. New and environmentally-friendly methods to control invasive species are urgently needed to improve bee health and limit the spread of invasive ants, such as Argentine ants. The high prevalence of bee-associated viruses and viral diversity in ants suggests that pathogens that are suitable for population control might be present in ant populations, although risks of spillovers into other species need to be carefully considered.</p>


2021 ◽  
Author(s):  
Marie Alexandre ◽  
Romain Marlin ◽  
Melanie Prague ◽  
Coleon Severin ◽  
Nidhal Kahlaoui ◽  
...  

The definition of correlates of protection is critical for the development of next generation SARS-CoV-2 vaccine platforms. Here, we propose a new framework for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication.


2021 ◽  
Vol 8 (11) ◽  
Author(s):  
Sadegh Marzban ◽  
Renji Han ◽  
Nóra Juhász ◽  
Gergely Röst

We propose a hybrid partial differential equation–agent-based (PDE–ABM) model to describe the spatio-temporal viral dynamics in a cell population. The virus concentration is considered as a continuous variable and virus movement is modelled by diffusion, while changes in the states of cells (i.e. healthy, infected, dead) are represented by a stochastic ABM. The two subsystems are intertwined: the probability of an agent getting infected in the ABM depends on the local viral concentration, and the source term of viral production in the PDE is determined by the cells that are infected. We develop a computational tool that allows us to study the hybrid system and the generated spatial patterns in detail. We systematically compare the outputs with a classical ODE system of viral dynamics, and find that the ODE model is a good approximation only if the diffusion coefficient is large. We demonstrate that the model is able to predict SARS-CoV-2 infection dynamics, and replicate the output of in vitro experiments. Applying the model to influenza as well, we can gain insight into why the outcomes of these two infections are different.


2021 ◽  
Vol 8 (11) ◽  
Author(s):  
Thalia Rodriguez ◽  
Hana M. Dobrovolny

The SARS-CoV-2 virus disproportionately causes serious illness and death in older individuals. In order to have the greatest impact in decreasing the human toll caused by the virus, antiviral treatment should be targeted to older patients. For this, we need a better understanding of the differences in viral dynamics between SARS-CoV-2 infection in younger and older adults. In this study, we use previously published averaged viral titre measurements from the nose and throat of SARS-CoV-2 infection in young and aged cynomolgus macaques to parametrize a viral kinetics model. We find that all viral kinetics parameters differ between young and aged macaques in the nasal passages, but that there are fewer differences in parameter estimates from the throat. We further use our parametrized model to study the antiviral treatment of young and aged animals, finding that early antiviral treatment is more likely to lead to a lengthening of the infection in aged animals, but not in young animals.


Sign in / Sign up

Export Citation Format

Share Document