scholarly journals Application of Adomian decomposition method to solve the fractional mathematical model of corona virus

Author(s):  
Adesoye Idowu Abioye ◽  
Olumuyiwa James Peter ◽  
Ayotunde Abayomi Ayoade ◽  
Ohigweren Airenoni Uwaheren ◽  
Mohammed Olanrewaju Ibrahim

In this paper, we consider a deterministic model of malaria transmission. Adomian decomposition method (ADM) is used to calculate an approximation to the solution of the non-linear couple of differential equations governing the model. Classical fourth-order Runge-Kutta method implemented in Maple18 confirms the validity of the ADM in solving the problem. Graphical results show that ADM agrees with R-K 4. In order words, these produced the same behaviour, validating ADM's efficiency and accuracy of ADM in finding the malaria model solution.


Author(s):  
Seyedeh Nasrin Hosseini Motlagh ◽  
Faeze Lari Motefaker

The aim of this study is achieve an analysis of the mathematical model governing radiotherapy as well as to achieve the concentration of healthy and cancerous cells to reduce the length of treatment and less damage to cancer treatment by this type of therapy. In order to obtain this, we used the latest mathematical radiotherapy model based on the Lotka-Volterra competitive equations and the Adomian decomposition method that is the one of the most advanced analytical solutions to solve differential equations to attain our goal. The calculation of the Adomian decomposition method was applied to the mathematical model governing radiotherapy, and then the concentration of healthy and cancerous cells was achieved with a very good approximation. Comparison of the behavior of healthy and cancerous cells concentrations based on experimental cases and the behavior of healthy and cancerous cells concentrations based on computations express the correctness of the work. ADM indicates the concentration of healthy and cancerous cells during the treatment stage and the no treatment stage can be effective in improving the modeling based on the competitive model of the Lotka-Volterra equations, which results in the reduction of the use of diagnostic devices, less radiation, the faster treatment process and decreasing the cost of treatment for patients and governments.


2012 ◽  
Vol 198-199 ◽  
pp. 894-898
Author(s):  
Feng Lin Cheng

In this paper, the subsurface flow wetland sewage treatment mathematical model is studied. the analytical solution is obtained by using the Laplace transform technique for non-steady subsurface flow wetland model and the diffusion characteristics for some parameters used in the model are analyzed. Then the solution for the model which is added by the source is obtained on two boundary conditions by the adomian decomposition method. The examples are given compare the approximate solution and the exact solutions.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6269-6280
Author(s):  
Hassan Gadain

In this work, combined double Laplace transform and Adomian decomposition method is presented to solve nonlinear singular one dimensional thermo-elasticity coupled system. Moreover, the convergence proof of the double Laplace transform decomposition method applied to our problem. By using one example, our proposed method is illustrated and the obtained results are confirmed.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 182-188
Author(s):  
O. González-Gaxiola ◽  
Anjan Biswas ◽  
Abdullah Kamis Alzahrani

AbstractThis paper presents optical Gaussons by the aid of the Laplace–Adomian decomposition scheme. The numerical simulations are presented both in the presence and in the absence of the detuning term. The error analyses of the scheme are also displayed.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Rasool Shah ◽  
Hassan Khan ◽  
Dumitru Baleanu ◽  
Poom Kumam ◽  
Muhammad Arif

AbstractIn this article, an efficient analytical technique, called Laplace–Adomian decomposition method, is used to obtain the solution of fractional Zakharov– Kuznetsov equations. The fractional derivatives are described in terms of Caputo sense. The solution of the suggested technique is represented in a series form of Adomian components, which is convergent to the exact solution of the given problems. Furthermore, the results of the present method have shown close relations with the exact approaches of the investigated problems. Illustrative examples are discussed, showing the validity of the current method. The attractive and straightforward procedure of the present method suggests that this method can easily be extended for the solutions of other nonlinear fractional-order partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document