catalytic reactor
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 66)

H-INDEX

33
(FIVE YEARS 7)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 447
Author(s):  
Qiang Chen ◽  
Mingming Mao ◽  
Min Gao ◽  
Yongqi Liu ◽  
Junrui Shi ◽  
...  

The catalytic combustion has the advantage of lower auto-ignition temperature and helps to expand the combustible limit of lean premixed gas. However, the intake needs to be preheated to certain temperature commonly through an independent heat exchanger. Similar to the principles of non-catalytic RTO combustion, this paper presents a similar approach whereby the combustion chamber is replaced by a catalytic combustion bed. A new catalytic reactor integrated with a heat recuperator is designed to enhance the heat recirculation effect. Using a two-dimensional computational fluid dynamics model, the performance of the reactor is studied. The reaction performances of the traditional and compact reactors are compared and analyzed. Under the same conditions, the compact reactor has better reaction performance and heat recirculation effect, which can effectively decrease the ignition temperature of feed gas. The influences of the inlet velocity, the inlet temperature, the methane concentration, and the thermal conductivity of porous media on the reaction performance of integrated catalytic reactor are studied. The results show that the inlet velocity, inlet temperature, methane concentration, and thermal conductivity of porous media materials have important effects on the reactor performance and heat recirculation effect, and the thermal conductivity of porous media materials has the most obvious influence. Moreover, the reaction performance of multiunit integrated catalytic reactor is studied. The results show that the regenerative effect of multiunit integrated catalytic reactor is further enhanced. This paper is of great significance to the recycling of low calorific value gas energy and relieving energy stress in the future.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 88
Author(s):  
Muhammad Arslan Zahid ◽  
Muhammad Ahsan ◽  
Iftikhar Ahmad ◽  
Muhammad Nouman Aslam Khan

The Claus process is one of the promising technologies for acid gas processing and sulfur recovery. Hydrogen sulfide primarily exists as a byproduct in the gas processing unit. It must be removed from natural gas. The Environmental Protection Agency (EPA) notices that increasing SO2 and CO2 in the air harms the environment. Sulfur generally has an elemental content of 0.1–6 wt % in crude oil, but the value could be higher than 14% for some crude oils and asphalts. It produces SO2 and CO2 gases, which damage the environment and atmosphere of the earth, called primary pollutants. When SO2 gas is reacted with water in the atmosphere, it causes sulphur and nitric acid, called a secondary pollutant. The world countries started desulphurization in 1962 to reduce the amount of sulfur in petroleum products. In this research, the Claus process was modeled in Aspen Plus software (AspenTech, Bedford, MA, USA) and industrial data validated it. The Peng–Robinson method is used for the simulation of hydrocarbon components. The influence of oxygen gas concentration, furnace temperature, the temperature of the first catalytic reactor, and temperature of the second catalytic reactor on the Claus process were studied. The first objective of the research is process modeling and simulation of a chemical process. The second objective is optimizing the process. The optimization tool in the Aspen Plus is used to obtain the best operating parameters. The optimization results show that sulfur recovery increased to 18%. Parametric analysis is studied regarding operating parameters and design parameters for increased production of sulfur. Due to pinch analysis on the Claus process, the operating cost of the heat exchangers is reduced to 40%. The third objective is the cost analysis of the process. Before optimization, it is shown that the production of sulfur recovery increased. In addition, the recovery of sulfur from hydrogen sulfide gas also increased. After optimizing the process, it is shown that the cost of heating and cooling utilities is reduced. In addition, the size of equipment is reduced. The optimization causes 2.5% of the profit on cost analysis.


Author(s):  
Mengmeng Cui ◽  
Shekhar R. Kulkarni ◽  
Stefan Wagner ◽  
Claudia Berger-Karin ◽  
Anton Nagy ◽  
...  

Author(s):  
Ahmed S. Fathalla ◽  
Nevine K. Amin ◽  
El-Sayed Z. El-Ashtoukhy ◽  
Gomaa H. Sedahmed

2021 ◽  
pp. 132905
Author(s):  
Van Toan Nguyen ◽  
Kyeong Hwan Yoon ◽  
Young Sun Mok ◽  
Duc Ba Nguyen ◽  
Duy Khoe Dinh ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 864
Author(s):  
Bogdan Ulejczyk ◽  
Łukasz Nogal ◽  
Paweł Jóźwik ◽  
Michał Młotek ◽  
Krzysztof Krawczyk

In the present work the process of hydrogen production was conducted in the plasma-catalytic reactor, the substrates were first treated with plasma and then introduced into the catalyst bed. Plasma was produced by a spark discharge. The discharge power ranged from 15 to 46 W. The catalyst was metallic nickel supported on Al2O3. The catalyst was active from a temperature of 400 °C. The substrate flow rate was 1 mol/h of water and 1 mol/h of methanol. The process generated H2, CO, CO2 and CH4. The gas which formed the greatest amount was H2. Its concentration in the gas was ~60%. The conversion of methanol and the production of hydrogen in the plasma-catalytic reactor were higher than in the plasma and catalytic reactors. The synergy effect of the interaction of two environments, i.e., plasma and the catalyst, was observed. The highest hydrogen production was 1.38 mol/h and the highest methanol conversion was 64%. The increased in the discharge power resulted in increasing methanol conversion and hydrogen production.


2021 ◽  
Vol 172 ◽  
pp. 130-144
Author(s):  
Ali Khosravanipour Mostafazadeh ◽  
Maria Samantha De La Torre ◽  
Yessika Padilla ◽  
Patrick Drogui ◽  
Satinder Kaur Brar ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Osama Bedair

PurposeThe purpose of this paper is to describe cost effective structural design procedures to support catalytic reactors used in hydrocarbon industry. Three case studies are presented using various reactor models. Modularization and transportation challenges are also discussed. The scope of the paper is limited only to the structural and construction aspects. The chemical and mechanical designs are not covered in this paper.Design/methodology/approachFinite element strategies are developed to model load transfer to reactor’s supports and to simulate soil/structure interaction. Fictitious nodes are generated at bolt locations to transfer the reactor’s loadings from the skirt to the pile cap. Soil-pile interaction is modeled using horizontal and vertical springs along the pile embedded length. Flexible supports are used at the bottom of the piles to stimulate the end bearing of the soil bed. The approach is demonstrated for several case studies of reactors support system.FindingsThe described algorithm is accurate and computationally efficient. Furthermore, the procedure can be used in practice for design catalytic reactor support.Practical implicationsThe paper provides very useful guidelines that can be utilized in practice for design of catalytic reactor supports system. The procedure is cost effective and computationally efficient.Originality/valueExtensive efforts were made in the past to develop economical procedures for catalytic reactors design. Much of the work focused on the process and mechanical aspects of catalytic reactors. Very limited work addressed the structural design aspects. Furthermore, no guidelines are available in current codes of practice.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vemuri Balakotaiah ◽  
Zhe Sun ◽  
Ram Ratnakar

Abstract A detailed analysis of the ignition–extinction and hysteresis behavior of the two widely used catalytic reactor models (packed-bed and monolith) for the case of a single exothermic reaction is presented. First, limiting models are used to determine the minimum adiabatic temperature rise and/or catalyst activity needed to observe hysteresis behavior. Next, explicit expressions are provided for estimating the feed temperature or space time at ignition (light-off) and extinction (blow-out) as a function of the adiabatic temperature rise (or inlet concentration of limiting reactant), effective thermal conductivity, time and length scales (reactor, tube/channel diameter, effective diffusion length and pore size), catalyst activity (or dilution) and heat loss. It is shown that various limiting reactor models such as the thin-bed, long-bed, lumped thermal, adiabatic and strongly cooled cases that are defined in terms of various inter- and intraphase heat and mass dispersion time scales can be used to derive scaling relations that are useful in predicting the ignition/extinction loci for both laboratory scale (with heat exchange) and large scale (near adiabatic) reactors.


Sign in / Sign up

Export Citation Format

Share Document