scholarly journals Experimental Study of Silty Clay Plane Strain Tri-axial Test under RTC Path and Modified Cam-clay Model

2018 ◽  
Vol 4 (3) ◽  
pp. 518
Author(s):  
Tao Cheng ◽  
Yi Zhang ◽  
Keqin Yan

The character of geomaterials is affected by stress path remarkably. Under different stress paths, the stress-strain characteristics of geomaterials are difference. For the unloading path in existing engineering situation, the physical parameters and constitutive model is usually determined by loading test. The path to uninstall the actual project conditions which may be a larger error. Therefore, this work proceeding from the actual project, deep excavation of the lateral unloading condition is analysed. The tests of CTC path and RTC path on silty clay in Huangshi city of china by multi-path tri-axial plane strain are carried on in the geotechnical Engineering Laboratory of Huangshi Institute of Technology. Then, the phenomenon under the two stress paths are compared with each other and describing the differences between them. The mechanical properties in the RTC stress path is analyzed mainly. Based on the Cam-Clay model framework, then derived this material yield equation based on Cam-clay model, Laiding the foundation for the numerical analysis.

2016 ◽  
Vol 837 ◽  
pp. 68-74
Author(s):  
Rafal Uliniarz

The paper presents a reasonably advanced constitutive law for soil – a hybrid of the Modified Cam Clay and a new RU development. The Modified Cam Clay model is an isotropic hardening elasto – plastic model originated by Burland in 1967 [1] within the critical state soil mechanics. This model describes realistically mechanical soil behaviour in normal consolidation states. The other one is designed to ensure more adequate soil responses to reloading paths, particularly in the range of small strains. The RU+MCC model has been implemented in the FEM computer code Z_SOIL.pc. To test the influence of the small strain nonlinearity on soil – structure interaction as well as to exhibit the ability of the proposed model to simulate realistically this effect, a comparative study based on the FEM solution has been carried out. As a benchmark a trial loading test of strip footing was used.


Author(s):  
Aleksandar D. Spasojević ◽  
Dejan M. Divac ◽  
Nenad M. Šušić

Author(s):  
Yuki YAMAKURI ◽  
Shun-ichi KOBAYASHI ◽  
Jun SAITO ◽  
Tatsunori MATSUMOTO

2013 ◽  
Vol 671-674 ◽  
pp. 357-362
Author(s):  
Hai Ming Liu ◽  
Jing Cao ◽  
Wei Feng Zhang

With the continuous development of urban underground space, the environmental effects of foundation pit excavation have been paid extensive close attention. Unfortunately, there are few researches in mucky soil and peaty soil. Adopted the software of FLAC-3D, the ground deformation due to the foundation pit excavation is simulated. Considering the characteristic of the soil, the Modified Cam-clay model and Mohr-coulomb model are used during the simulation. Meanwhile, the structure units are used to simulate foundation pit structure. The results of the field measurement and numerical simulation suggest that the influenced range soil is about 2.7 times of the excavation depth. Furthermore, the Modified Cam-clay model can obtain a better result to simulate the mucky soil and peaty soil in Kunming. The results can be referred to design and construct of foundation pits.


2003 ◽  
Vol 40 (2) ◽  
pp. 403-418 ◽  
Author(s):  
Simon J Wheeler ◽  
Anu Näätänen ◽  
Minna Karstunen ◽  
Matti Lojander

An anisotropic elastoplastic model for soft clays is presented. Experimental data from multistage drained triaxial stress path tests on Otaniemi clay from Finland provide support for the proposed shape of the yield curve and for the proposed relationship describing the change of yield curve inclination with plastic straining. Procedures are proposed for determining the initial inclination of the yield curve and the values of the two additional soil constants within the model. Comparisons of model simulations with experimental data demonstrate significant improvements in the performance of the new model over the Modified Cam Clay model. The remaining discrepancies are mainly attributable to the important role of destructuration in the sensitive Otaniemi clay.Key words: anisotropy, constitutive relations, elastoplasticity, laboratory tests, rotational hardening, soft clays.


Sign in / Sign up

Export Citation Format

Share Document