scholarly journals Trombe Wall Application with Heat Storage Tank

2019 ◽  
Vol 5 (7) ◽  
pp. 1477-1489 ◽  
Author(s):  
Kıvanç Topçuoğlu

In this study, an investigation was made of the performance of a Trombe wall of classical structure used together with a heat store. Most Trombe walls are able to supply the heating needs of a space to which they are connected without the need for extra heating at times when the sun is shining. However, the heat obtained from the Trombe wall can be in excess of needs at such times, and measures must be taken to provide ventilation to the heated space. It is thought that the heat energy can be used more efficiently and productively by storing the excess heat outside the building and using it inside the building when there is no sunlight. To this purpose, a tank full of water and marble was built as a heat store as an alternative to the general Trombe wall design, and an attempt was made to minimise heat losses by burying it in the ground. It was concluded that in place of a traditional Trombe wall system using a massive wall heat store, a heat store could be constructed in a different position and with different materials. The Trombe wall system which was developed and tested met up to 30% of the energy needed for heating and cooling the building, and reduced the architectural and static disadvantages of Trombe wall systems. As a result of the study, it was seen that where a standard reinforced concrete wall could supply heat to the inside for 7 hours and 12 minutes, the figure for a wall made of paraffin wax was 8 hours and 55 minutes. In the same study, the heat storage thickness of a reinforced concrete wall was calculated as 20 cm, while that of a paraffin wax wall was calculated as 5 cm.

Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 295
Author(s):  
Amirhossein Orumiyehei ◽  
Timothy J. Sullivan

To strengthen the resilience of our built environment, a good understanding of seismic risk is required. Probabilistic performance-based assessment is able to rigorously compute seismic risk and the advent of numerical computer-based analyses has helped with this. However, it is still a challenging process and as such, this study presents a simplified probabilistic displacement-based assessment approach for reinforced concrete wall buildings. The proposed approach is trialed by applying the methodology to 4-, 8-, and 12-story case study buildings, and results are compared with those obtained via multi-stripe analyses, with allowance for uncertainty in demand and capacity, including some allowance for modeling uncertainty. The results indicate that the proposed approach enables practitioners to practically estimate the median intensity associated with exceeding a given mechanism and the annual probability of exceeding assessment limit states. Further research to extend the simplified approach to other structural systems is recommended. Moreover, the research highlights the need for more information on the uncertainty in our strength and deformation estimates, to improve the accuracy of risk assessment procedures.


2021 ◽  
Vol 238 ◽  
pp. 111995
Author(s):  
S.J. Tagle ◽  
R. Jünemann ◽  
J. Vásquez ◽  
J.C. de la Llera ◽  
M. Baiguera

2018 ◽  
Vol 167 ◽  
pp. 66-71 ◽  
Author(s):  
H. Takazawa ◽  
K. Hirosaka ◽  
K. Miyazaki ◽  
N. Tohyama ◽  
S. Saigo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document