scholarly journals Parametric Study of Sheet Pile Wall using ABAQUS

2021 ◽  
Vol 7 (1) ◽  
pp. 71-82
Author(s):  
Taku Muni ◽  
Dipika Devi ◽  
Sukumar Baishya

In the present study two-dimensional finite element analysis has been carried out on cantilever sheet pile wall using ABAQUS/Standard software to study the effect of different friction angles and its related parameters such as dilation angle, the interfacial friction coefficient between soil-wall on earth pressure distribution, and wall deformation. From the results obtained, it is found that there is a significant decrease in wall deformation with an increase in the angle of internal friction and its related parameters. The earth pressure results obtained from the finite element analysis shared a unique relationship with that of a conventional method. Both the results showed similar linear behavior up to a certain percentage of wall height and then changed drastically in lower portions of the wall. This trend of behavior is seen in both active as well as in passive earth pressure distribution for all the frictional angle. Hence, after comparing the differences that exist in the results for both methods, from the analysis a new relationship between the earth pressure coefficients from a conventional method and the finite element method has been developed for both active and passive earth pressure on either side of the sheet pile wall. This relationship so derived can be used to compute more reasonable earth pressure distributions for a sheet pile wall without carrying out a numerical analysis with a minimal time of computation. And also the earth pressure coefficient calculated from this governing equation can serve as a quick reference for any decision regarding the design of the sheet pile wall. Doi: 10.28991/cej-2021-03091638 Full Text: PDF

2018 ◽  
Vol 244 ◽  
pp. 146-158 ◽  
Author(s):  
Liang Tang ◽  
Shengyi Cong ◽  
Wenqiang Xing ◽  
Xianzhang Ling ◽  
Lin Geng ◽  
...  

2012 ◽  
Vol 204-208 ◽  
pp. 410-413
Author(s):  
Shi Lun Feng ◽  
Jun Li ◽  
Pu Lin Li

The active earth pressure on rigid retaining wall is analyzed using the finite element software ABAQUS. The fill behind the wall is sand and the Mohr–Coulomb constitutive model was used to model the stress–strain behaviour of soils.The finite element analysis results were compared with the Rankine results. The maximum error of the results is about 10% and the finite element analysis result is bigger. So the result obtained from the finite element method could safely be used in actual projects.


Author(s):  
Rajeev Madazhy ◽  
Sheril Mathews ◽  
Erik Howard

A novel design using 3 bolts for a self-energized seal connector is proposed for quick assembly applications. Contact pressure distribution on the surface of the seal ring during initial bolt-up and subsequent operating pressure is analyzed for 3″ and 10″ connectors using Finite Element Analysis. FEA is performed on a 3″ and 10″ ANSI RF flange assembly and contact pressure distribution on the RF gasket is compared with the tapered seal ring assemblies. Hydrostatic tests are carried out for the tapered seal and ANSI bolted connectors to evaluate maximum pressure at which leak occurs for both size assemblies.


2016 ◽  
Vol 681 ◽  
pp. 228-233
Author(s):  
R. Ismail ◽  
M. Tauviqirrahman ◽  
J. Jamari ◽  
D.J. Schipper

Although in terms of conservation wear is undesirable, however, running-in wear is encouraged rather than avoided. Running-in is rather complex and most of the studies related to the change in micro-geometry have been conducted statistically. The purpose of this study was to characterize the running-in of sliding contacts using finite element analysis based on measured micro-geometries. The developed model combines the finite element simulation, Archard’s wear equation and updated geometry to calculate the contact pressure distribution and wear depth. Results show that the proposed model is able to predict the running-in phase of sliding contact system.


Sign in / Sign up

Export Citation Format

Share Document