scholarly journals Performance Study of Buried Pipelines under Static Loads

2022 ◽  
Vol 8 (1) ◽  
pp. 1-23
Author(s):  
Mahdi J. Alanazi ◽  
Yang Qinghua ◽  
Khalil Al-Bukhaiti

The possibility of servicing lifelines such as highways, railways, pipelines, and tunnels is of great social importance. The characteristic that separates the buried pipeline from other structures is that its dimensions are very long compared to its other dimensions. Ground vibrations caused by earthquakes, construction activities, traffic, explosions, and machinery can damage these structures. Lifeline integrity can be compromised in two ways: (1) direct damage due to excessive dynamic loading of the lifeline, and (2) indirect damage due to soil failures such as liquefaction, slope instability, and differential settlements. 3D printing (also known as additive manufacturing) is an advanced manufacturing process that can automatically produce complex geometric shapes from a 3D computer-aided design model without tools, molds, or fixtures. This automated manufacturing process has been applied in diverse industries today because it can revolutionize the construction industry with expected benefits. This research study on the performance of buried pipelines under static loads to the structure's safety against the possible development of progressive failure. This research study includes a numerical study, where it was studied many parameters to value the performance of the pipeline. The parameters are (a) the material of the pipeline (steel, traditional concrete, and 3D concrete printed), (b) the thickness of the pipeline (20, 30, and 40 mm), and (c) soil type (moist sandy soil, saturated sandy soil, moist cohesive soil, and saturated cohesive soil). Different results were obtained depending on the type of soil where all pipelines materials' behavior was similar in the case of moist soil. Doi: 10.28991/CEJ-2022-08-01-01 Full Text: PDF

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chien-Ho Ko

Purpose Additive manufacturing of concrete (AMoC) is an emerging technology for constructing buildings. However, due to the nature of the concrete property and constructing buildings in layers, constraints and limitations are encountered while applying AMoC in architecture. This paper aims to analyze the constraints and limitations that may be encountered while using AMoC in architecture. Design/methodology/approach A descriptive research approach is used to conduct this study. First, basic notions of AMoC are introduced. Then, challenges of AMoC, including hardware, material property, control and design, are addressed. Finally, strategies that may be used to overcome the challenges are discussed. Findings Factors influencing the success of AMoC include hardware, material, control methods, manufacturing process and design. Considering these issues in the early design phase is crucial to achieving a successful computer-aided design (CAD)/computer-aided manufacturing (CAM) integration to bring CAD and CAM benefits into the architecture industry. Originality/value In three-dimensional (3D) printing, objects are constructed layer by layer. Printing results are thus affected by the additive method (such as toolpath) and material properties (such as tensile strength and slump). Although previous studies attempt to improve AMoC, most of them focus on the manufacturing process. However, a successful application of AMoC in architecture needs to consider the possible constraints and limitations of concrete 3D printing. So far, research on the potential challenges of applying AMoC in architecture from a building lifecycle perspective is still limited. The study results of this study could be used to improve design and construction while applying AMoC in architecture.


Author(s):  
Pratik Patel ◽  
Tushar Gajjar ◽  
Dhaval Shah ◽  
Shashikant Joshi ◽  
Bimal Kumar Mawandiya

3D Printing ◽  
2017 ◽  
pp. 154-171 ◽  
Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi

Laser additive manufacturing is an advanced manufacturing process for making prototypes as well as functional parts directly from the three dimensional (3D) Computer-Aided Design (CAD) model of the part and the parts are built up adding materials layer after layer, until the part is competed. Of all the additive manufacturing process, laser additive manufacturing is more favoured because of the advantages that laser offers. Laser is characterized by collimated linear beam that can be accurately controlled. This chapter brings to light, the various laser additive manufacturing technologies such as: - selective laser sintering and melting, stereolithography and laser metal deposition. Each of these laser additive manufacturing technologies are described with their merits and demerits as well as their areas of applications. Properties of some of the parts produced through these processes are also reviewed in this chapter.


2019 ◽  
Vol 20 (3) ◽  
pp. 301
Author(s):  
Benoit Rosa ◽  
Maxence Bigerelle ◽  
Antoine Brient ◽  
Serge Samper

Choosing appropriate manufacturing processes to create functional surfaces is a challenging issue for some industrials. A specific surface finish can be obtained by different manufacturing processes, each of them having a different economic impact. Currently, no tool could guarantee the surface function through the choice of a manufacturing process and its associated operating parameters. This paper aims at discussing about a framework of models for selecting conventional or innovative manufacturing processes and their associated parameters with regards to surface topographies and textures. To achieve this, a concept of decomposition of database is introduced. Manufacturing processes such as, electro discharge machining, water jet machining (used for texturing surfaces), sandblasting and laser cladding are modelled. Finally, a concept that links such a database with computer aided design (CAD) software in order to integrate surfaces functionalities and manufacturing processes directly into the design step is discussed.


Author(s):  
H. Rasouli ◽  
A. Taghavi Ghalesari ◽  
M. Modarresi ◽  
A. Hasanzadeh

2017 ◽  
Vol 95 (1-4) ◽  
pp. 367-374
Author(s):  
Wissal Yangui ◽  
Ahmed Ktari ◽  
Mouna Gammoudi ◽  
Noamen Guermazi ◽  
Khaled Elleuch

2016 ◽  
Vol 161 ◽  
pp. 1030-1036 ◽  
Author(s):  
Mehdi Modarresi ◽  
Habib Rasouli ◽  
Abbasali Taghavi Ghalesari ◽  
Mohammad Hassan Baziar

Sign in / Sign up

Export Citation Format

Share Document