scholarly journals Towards Efficient and Automated Side Channel Evaluations at Design Time

10.29007/mbf3 ◽  
2018 ◽  
Author(s):  
Danilo Šijačić ◽  
Josep Balasch ◽  
Bohan Yang ◽  
Santosh Ghosh ◽  
Ingrid Verbauwhede

Models and tools developed by the semiconductor community have matured over decades of use. As a result, hardware simulations can yield highly accurate and easily automated pre-silicon estimates for e.g. timing and area figures. In this work we design, implement, and evaluate CASCADE, a framework that combines a largely automated full-stack standard-cell design flow with the state of the art techniques for side channel analysis. We show how it can be used to efficiently evaluate side channel leakage prior to chip manufacturing. Moreover, it is independent of the underlying countermeasure and it can be applied starting from the earliest stages of the design flow. Additionally, we provide experimental validation through assessment of the side channel security of representative cryptographic circuits. We discuss aspects related to the performance, scalability, and utility to the designers. In particular, we show that CASCADE can evaluate information leakage with 1 million simulated traces in less than 4 hours using a single desktop workstation, for a design larger than 100kGE.

2019 ◽  
Vol 15 (8) ◽  
pp. 155014771986786 ◽  
Author(s):  
Min Wang ◽  
Kama Huang ◽  
Yi Wang ◽  
Zhen Wu ◽  
Zhibo Du

Security of cyber-physical systems against cyber attacks is an important yet challenging problem. Cyber-physical systems are prone to information leakage from the physical domain. The analog emissions, such as magnetic and power, can turn into side channel revealing valuable data, even the crypto key of the system. Template attack is a popular type of side-channel analysis using machine learning technology. Malicious attackers can use template attack to profile the analog emission, then recover the secret key of the system. But conventional template attack requires that the adversary has access to an identical experiment device that he can program to his choice. This study proposes a novel side-channel analysis for physical-domain security in cyber-physical systems. Our contributions are the following three points: (1) Major peak region method for finding points of interests correctly is proposed. (2) A method for establishing templates on the basis of those points of interest still without requiring knowledge of the key is proposed. Several techniques are proposed to improve the quality of the templates as well. (3) A method for choosing attacking traces is proposed to significantly improve the attacking efficiency. Our experiments on three devices show that the proposed method is significantly more effective than conventional template attack. By doing so, we will highlight the importance of performing similar analysis during design time to secure the cyber-physical system.


Author(s):  
Shivam Bhasin ◽  
Jakub Breier ◽  
Xiaolu Hou ◽  
Dirmanto Jap ◽  
Romain Poussier ◽  
...  

Side-channel analysis constitutes a powerful attack vector against cryptographic implementations. Techniques such as power and electromagnetic side-channel analysis have been extensively studied to provide an efficient way to recover the secret key used in cryptographic algorithms. To protect against such attacks, countermeasure designers have developed protection methods, such as masking and hiding, to make the attacks harder. However, due to significant overheads, these protections are sometimes deployed only at the beginning and the end of encryption, which are the main targets for side-channel attacks.In this paper, we present a methodology for side-channel assisted differential cryptanalysis attack to target middle rounds of block cipher implementations. Such method presents a powerful attack vector against designs that normally only protect the beginning and end rounds of ciphers. We generalize the attack to SPN based ciphers and calculate the effort the attacker needs to recover the secret key. We provide experimental results on 8-bit and 32-bit microcontrollers. We provide case studies on state-of-the-art symmetric block ciphers, such as AES, SKINNY, and PRESENT. Furthermore, we show how to attack shuffling-protected implementations.


Cryptography ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 30
Author(s):  
Debayan Das ◽  
Shreyas Sen

Electromagnetic and power side-channel analysis (SCA) provides attackers a prominent tool to extract the secret key from the cryptographic engine. In this article, we present our cross-device deep learning (DL)-based side-channel attack (X-DeepSCA) which reduces the time to attack on embedded devices, thereby increasing the threat surface significantly. Consequently, with the knowledge of such advanced attacks, we performed a ground-up white-box analysis of the crypto IC to root-cause the source of the electromagnetic (EM) side-channel leakage. Equipped with the understanding that the higher-level metals significantly contribute to the EM leakage, we present STELLAR, which proposes to route the crypto core within the lower metals and then embed it within a current-domain signature attenuation (CDSA) hardware to ensure that the critical correlated signature gets suppressed before it reaches the top-level metal layers. CDSA-AES256 with local lower metal routing was fabricated in a TSMC 65 nm process and evaluated against different profiled and non-profiled attacks, showing protection beyond 1B encryptions, compared to ∼10K for the unprotected AES. Overall, the presented countermeasure achieved a 100× improvement over the state-of-the-art countermeasures available, with comparable power/area overheads and without any performance degradation. Moreover, it is a generic countermeasure and can be used to protect any crypto cores while preserving the legacy of the existing implementations.


Author(s):  
M. Aigner ◽  
S. Mangard ◽  
F. Menichelli ◽  
R. Menicocci ◽  
M. Olivieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document