scholarly journals Efficient Reactive Power Compensation Algorithm for Distribution Network

2017 ◽  
Vol 20 (3&4) ◽  
pp. 373-384
Author(s):  
J. Jerome

The use of automation and energy efficient equipment with electronic control would greatly improve industrial production.  These new devices are more sensitive to supply voltage deviation and the characteristics of the power system that was previously ignored are now very important. Hence the benefits of distribution automation have been widely acknowledged in recent years. This paper proposes an efficient load flow solution technique extended to find optimum location for reactive power compensation and network reconfiguration for planning and day-to-day operation of distribution networks.  This is required as a part of the distribution automation system (DAS) for taking various control and operation decisions.  The method exploits the radial nature of the network and uses forward and backward propagation technique to calculate branch currents and node voltages.  The proposed method has been tested to analyze several practical distribution networks of various voltage levels and also having high R/X ratio.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jindi Hu ◽  
Weibin Yin ◽  
Chengjin Ye ◽  
Weidong Bao ◽  
Jiajia Wu ◽  
...  

Due to the high proportion of renewable energies, traditional voltage regulation methods such as on-load tap changers (OLTCs) and switching capacitors (SCs) are currently facing the challenge of providing fast, step-less, and low-cost reactive power to reduce the increasing risks of voltage violations in distribution networks (DNs). To meet such increasing demand for voltage regulation, smart inverters, including photovoltaics (PVs) and electric vehicle (EV) chargers, stand out as a feasible approach for reactive power compensation. This paper aims to assess the voltage violation risks in DNs considering the reactive power response of smart inverters. Firstly, reactive power compensation models of PVs and EV chargers are investigated and voltage deviation indexes of the regulation results are proposed. Moreover, kernel density estimation (KDE) and slice sampling are adopted to provide the PV output and EV charging demand samples. Then, the risk assessment is carried out with a voltage regulation model utilizing OLTCs, SCs, and available smart inverters. Numerical studies demonstrate that the reactive power support from smart inverters can significantly mitigate the voltage violation risks and reduce the switching and cost of OLTCs and capacitors in DNs.


SCITECH Nepal ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1-7
Author(s):  
Avinash Khatri KC ◽  
Tika Ram Regmi

An electric distribution system plays an important role in achieving satisfactory power supply. The quality of power is measured by voltage stability and profile of voltage. The voltage profile is affected by the losses in distribution system. As the load is mostly inductive on the distribution system and requires large reactive power, most of the power quality problems can be resolved with requisite control of reactive power. Capacitors are often installed in distribution system for reactive power compensation. This paper presents two stage procedures to identify the location and size of capacitor bank. In the first stage, the load flow is carried out to find the losses of the system using sweep algorithm. In the next stage, different size of capacitors are initialized and placed in each possible candidate bus and again load flow for the system is carried out. The objective function of the cost incorporating capacitor cost and loss cost is formulated constrained with voltage limits. The capacitor with the minimum cost is selected as the optimized solution. The proposed procedure is applied to different standard test systems as 12-bus radial distribution systems. In addition, the proposed procedure is applied on a real distribution system, a section of Sallaghari Feeder of Thimi substation. The voltage drops and power loss before and after installing the capacitor were compared for the system under test in this work. The result showed better voltage profiles and power losses of the distribution system can be improved by using the proposed method and it can be a benefit to the distribution networks.


2009 ◽  
Vol 86 (7-8) ◽  
pp. 977-984 ◽  
Author(s):  
Carlos Henggeler Antunes ◽  
Dulce Fernão Pires ◽  
Carlos Barrico ◽  
Álvaro Gomes ◽  
António Gomes Martins

Sign in / Sign up

Export Citation Format

Share Document