Performance Based Seismic Design of Reinforced Concrete Building By Non-Linear Static Analysis

2018 ◽  
Vol 15 (2) ◽  
pp. 340-344
Author(s):  
Prashant G. Ingle ◽  
Vijaykumar P. Bhusare
2021 ◽  
Vol 850 (1) ◽  
pp. 012012
Author(s):  
R. Prashanthi ◽  
S. Elavenil

Abstract The blast explosion causes catastrophic failure of structure both externally and internally. In this work the analytical investigation is carried out on the blast performance of the reinforced concrete building frame. Reinforced concrete building connection is vital in the Moment Resistant Frames (MRF) and they play a vital role under constant blast load. It is important to design the building for blast loading since they are subjected to large displacements. The non-linear dynamic behavior of the building by time history analysis method is performed by using SAP2000 finite element stimulation software. Blast load is idealized as the triangular pulse for single degree of freedom system and the effect of the blast load at a different standoff distances on the building element is examined. The analytical method could predict the overall flexural, non-linear shear behavior and ductile response of the building at different modes. The results of the stimulations for various failure conditions such as maximum displacement, maximum base shear and spectral acceleration as per IS 1893-2016 for non-linear dynamic responses are investigated in this study.


2019 ◽  
Vol 25 (3) ◽  
pp. 102-116
Author(s):  
Rafaa Mahmood Abbas ◽  
Ruaa A. Abdulhameed

This paper aims to study the second-order geometric nonlinearity effects of P-Delta on the dynamic response of tall reinforced concrete buildings due to a wide range of earthquake ground motion forces, including minor earthquake up to moderate and strong earthquakes. The frequency domain dynamic analysis procedure was used for response assessment. Reinforced concrete building models with different heights up to 50 stories were analyzed. The finite element software ETABS (version 16.0.3) was used to analyze reinforced concrete building models. The study reveals that the percentage increase in buildings' sway and drift due to P-Delta effects are nearly constant for specific building height irrespective of the seismic design category assigned to the building. Generally, increase in building lateral displacement and story drift due to P-Delta effects for all seismic design categories is less than 2% for 10 story buildings, whereas this increase for 20 stories or taller buildings is significant with a maximum value around 16% for 50 story building. As for column forces, the study shows that, generally, columns bending moment increases and shear force decreases when P-Delta effects accounted for. In conclusion, the study recommended that the effects of P-Delta need to be addressed for all SDCs allowed by ASCE7-10 and the most important factor to abandonment P-Delta effects is the building height limit.  


2021 ◽  
Vol 682 (1) ◽  
pp. 012051
Author(s):  
M I Adiyanto ◽  
P J Ramadhansyah ◽  
N I Ramli ◽  
N S H Harith ◽  
S M S A Razak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document